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A comparison of bacterial communities from OMZ sediments in the Arabian
Sea and the Bay of Bengal reveals major differences in nitrogen turnover and
carbon recycling potential
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ABSTRACT

The Northern Indian Ocean hosts two Oxygen Minimum Zones (OMZ), one in the Arabian Sea
and the other in the Bay of Bengal. 16S rRNA gene amplicon sequencing was used to
understand the total bacterial diversity in, the surface sediment off Goa within the OMZ of
the Arabian Sea, and off Paradeep within the OMZ of the Bay of Bengal. Functional profiling
was carried out to pinpoint the occurrence of specific bacterial operational taxonomic units
(OTUs) which have been previously described to harbour certain genes/enzymes relevant to
biogeochemical cycling of carbon, nitrogen, and sulfur compounds. The dominant phyla
identified included Firmicutes (33.08%) and Proteobacteria (32.59%) from the Arabian Sea,
and Proteobacteria (52.65%) and Planctomycetes (9.36%) from the Bay of Bengal. Only 30%
of OTUs were shared between the sites which make up three-fourth of the Bay of Bengal
OMZ bacterial community, but only one-fourth of the Arabian Sea OMZ sediment bacterial
community. Statistical analysis indicated the bacterial diversity from sediments of the Bay of
Bengal OMZ is ~48% higher than the Arabian Sea OMZ. The community analysis combined
with a predictive functional profiling of 16S rRNA amplicons revealed some major
differences regarding sediment nitrogen fixation and carbon recycling, and identified a
distinct bacterial community structure within the two shallow OMZ sites lying in the east
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coast and west coast of the peninsular India.

Introduction

The Northern Indian Ocean consists of two major
ocean basins: the Arabian Sea (AS) in the west and
the Bay of Bengal (BoB) in the east. Even though
both these basins are placed in the same latitude,
they differ in many aspects. This includes differences
in average salinity, primary productivity, nitrogen
loss, the intensity of mesoscale eddies, contrasting
transport of dissolved oxygen, and organic matter
(McCreary Jr et al. 2013). Both these basins experience
intense oxygen depletion below the mixed layer of the
water column, where dissolved oxygen (DO) is usually
below the detection limit of conventional methods.
The AS-OMZ between the water depths of ~100/
150-1000/1200 m is the thickest OMZ, and is identified
as a primary site of fixed nitrogen loss (Naqvi et al.
2006). In contrast, the BoB-OMZ occurs at shallow
depths, more seasonal in nature (Sarma et al. 2013)
and has been reported to be less intense than the
AS-OMZ (Paulmier 2009) with DO concentrations still

present in the nanomolar range (Bristow et al. 2017).
Nitrogen loss has been described as rather insignificant
and limited by substrate availability resulting from low
organic matter supply by primary production (Bristow
et al. 2017; Loscher et al. 2020). The sequence of elec-
tron acceptor utilization in such an environment, gen-
erally follow the thermodynamic energy yield (Froelich
et al. 1979). However, recent studies support the possi-
bility of co-occurrence of metabolisms using different
electron acceptors in OMZs, one example would be
the existence of a cryptic sulfur cycle, which occurs
along with nitrogen cycle processes (Canfield et al.
2010; Callbeck et al. 2018).

Surface sediment underlying OMZs entraps all
recent microbial signatures of the water column
above (Gerdes et al. 2000) in addition to the sediment
microbiome; hence it is interesting to explore and
compare such benthic OMZ ecosystems, especially
those located in shallow zones. OMZs act as niches
for microorganisms that can use alternative pathways
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of respiration (Diaz and Rosenberg 2008; Pitcher et al.
2011). In the BoB-OMZ, aerobic communities have
been identified to coexist with anaerobic communities
(Bristow et al. 2017). In the AS, such coexistence was
explained by separate micro-niches in the same
environment (Pitcher et al. 2011). Similar studies
carried out in the eastern AS-OMZ sediments have
identified Proteobacteria (52%) and Planctomycetes
(12.7%) as the dominant phyla (Divya et al. 2011).
Other integral phyla of soil/sediment habitat are Bac-
teroidetes, Acidobacteria, Actinobacteria, and Firmi-
cutes (Lv et al. 2014).

It is vital to understand the dominant microbial taxa
and also their functional ecology to throw light on the
biogeochemistry of these oxygen-depleted zones
(Rajpathak et al. 2018). With the advent of molecular
techniques over the last decade, a large volume of
data has been generated which helped to elucidate
the bacterial community structure (Hodkinson and
Grice 2015). Phylogenetic profiling, using next-gener-
ation sequencing (NGS) techniques, offer high-resol-
ution data from complex environments (Claesson
et al. 2010). By using algorithms leveraging functional
databases, it is also possible to predict putative func-
tional ecology from 16S rRNA amplicon data. The avail-
able data on the bacterial community structure of the
northern Indian Ocean OMZ using such high through-
put sequencing techniques has been limited to the
pelagic realm (Rajpathak et al. 2018; Fernandes et al.
2019), or restricted to some functionally significant
groups rather than total bacterial community
(Fernandes et al. 2018). Descriptions of OMZ sediment
bacterial communities are largely underrepresented
and need special attention.

The objective of our work was to compare the
surface sediment bacterial taxonomic and functional
diversity within two major OMZs in the northern
Indian Ocean, the Arabian Sea (AS) and the Bay of
Bengal (BoB), using NGS on the v1-v3 hypervariable
region of the 165 rRNA gene. Based on this high
throughput sequencing dataset, we predicted the
metabolic potential present at both sites, the AS and
the BoB with a key focus on genes relevant for nitrogen
and sulfur turnover, and many fermentative pathways
to understand the bacterial role in carbonate precipi-
tation, a possibility least explored.

Materials and methods
Sample collection and site characteristics

Sediment samples were collected in February 2013 off
Goa in the AS-OMZ (SSK-046, RV Sindhu Sankalp), at the
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GS1A site located at 15°13'N, 72°56'E, and in August
2014 off Paradeep in the BoB (SSD-002, RV Sindhu
Sadhana)., at the PS1B site located at 19°57'N, 86°
46'E [Figure 1(A): Plotted in Ocean Data View
v.5.2.1.(Schlitzer 2015)]. A profile of nutrient and DO
distribution is presented from the AS and the BoB,
respectively (Figure 1(B,C)). These profiles represent
typical conditions for the two sampling locations but
were obtained from other cruises [B: 15°1'N, 72°26E,
collected in February 2018; and C: 19°41'N, 86°45'E,
collected in August 2010] and show the distribution
of DO, nitrate (NO3), and nitrite (NO3) from the
surface to 1000 m water depth in puM. Sampling at
both stations covered surface sediments below a
~200 m deep water column, underlying OMZ waters.
Though both areas experience intense oxygen
depletion with the core of the OMZ located between
150 and 500 m, the maximum NO, values are twice
as high in the AS as compared to the BoB, with a pro-
minent secondary nitrite maxima (SNM). A box corer
was used to retrieve the sediment samples. The sedi-
ment cores were carefully sub-sampled using acrylic
core liners (25 mm ID, ~30 cm length), sub-samples
were taken from the centre of the core to avoid
mixing of sediment layers. The 0-5 cm subsections of
samples were transferred into sterile screw-cap con-
tainers. Samples were handled sterile and preserved
at —20°C until further analysis. The Temperature/Sal-
inity profiling of the water column above the sediment
was carried out using a Sea-Bird Electronics (SBE, USA)
conductivity-temperature-depth (CTD) sensor (SBE9),
equipped with a Niskin bottle rosette sampling
system. The dissolved oxygen (DO) sensor used here
(SBE43) vyields an accuracy: £2% of saturation, pre-
cision: 1 uM, and detection limit: <1uM.

Sediment characterization

The sediment samples were freeze-dried, homogen-
ized, and ground in an agate mortar prior analysis.
Total carbon (TC) and total nitrogen (TN) comprising
both inorganic and organic forms were analysed in
an elemental carbon/ nitrogen (CN) analyzer (Fisons
NA 1500) using the method described in Bhushan
et al. (2001). The calibration of the CN analyzer was
done using a reference standard (NC-soil), and the
obtained recovery rate was 96% for TC and 99% for
TN. The precision was monitored by carrying out repli-
cates for both samples and was +1%. The detection
limits were two times the blank value. Total organic
carbon (TOC) contents were determined with a colori-
metric based wet oxidation method (Azam and Sajjad
2005), which is reported to be highly reproducible.
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Figure 1. (A) Station map, blue dots indicate sampling stations, red dots are the regions where OMZ water-column characteristics

were obtained from. (B) Representative water column profiles of biogeochemical parameters from the AS-OMZ (Unpublished data,
personal communication from Dr. G.V.M. Gupa) and (C) the BoB- OMZ (Sarma et al. 2013).

Total inorganic carbon (TIC) was determined as the
difference between TC and TOC (Bernard et al. 1995).
Organic matter (OM) was calculated by multiplying
TOC with the van Bemmelen factor 1.724 (Heaton
et al. 2016), based on the assumption that humidified
organic matter of soil contains 58% carbon, however,

variations of 40-60% have been observed (Nelson
and Sommers 1982). For determining CaCOs; abun-
dances, TIC was multiplied with a factor of 8.33 to
get the per cent calcium carbonate as described pre-
viously (Bernard et al. 1995). The TOC/TN value was
converted into molar ratio by multiplying with a



factor 1.167 derived from atomic weights of Carbon
and Nitrogen (i.e. 14/12) (Meyers 1994).

Genomic DNA extraction and 454
pyrosequencing

Total genomic DNA was extracted from 400 to 500 mg
of the sediment samples in triplicates, using the Fast
DNA™ SPIN Kit for Soil (MP Biomedicals, Santa Ana,
CA). The purified DNA was quantified using a Nano-
drop 2000 spectrophotometer (Thermo Fisher Scien-
tific, USA). DNA was quality checked on an agarose
gel (0.8%). The extracted DNA was pooled and
amplified using barcoded fusion primers targeting
the v1-v3 region of the 16S rRNA gene using the uni-
versal primer 27F (GAGTTTGATCMTGGCTCAG) and
518R (ATTACCGCGGCTGCTGG) (Okubo et al. 2009).
Mixed amplicons were subjected to emulsion PCR
and then deposited on picotiter plates (Agilent, USA).
Amplification conditions consisted of an initial dena-
turation step at 95°C for 5 min, followed by 30 cycles
of denaturation at 95°C for 30 s, annealing at 55°C
for 30 s, and elongation at 72°C for 30 s, with a final
elongation at 72°C for 5 min. The detailed procedure
of pyrosequencing is described elsewhere (Suh et al.
2014). Sequencing was performed by Chunlab Inc.
(Seoul, Korea) using a 454 GS FLX Titanium Sequencing
system (Roche Branford, CT, USA) per the manufac-
turer’s instructions.

Sequence data processing

Amplicon pyrosequencing data were processed using
the QIIME software package, ver. 1.7 (Caporaso et al.
2010). Chimaeras and primer mismatch sequences
were removed from the amplicon dataset using the
Amplicon Noise software, version 1.27 (Quince et al.
2011) available from the FLX Titanium sequence data
platform, and implemented in QIIME, a using the
program CD-HIT (Edgar 2010). The average read
length of PCR amplicons was 378 + 45 bp. The result-
ing reads were taxonomically classified based on simi-
larity scores in both the basic local search tool
(BLASTN) searches (E-value >107°) on the EzTaxon-e
16S rDNA database (2014.07.01) and on the SILVA
SSU database, release 132, based on the RDP classifier
method (version14) (Im et al. 2012). Relative abun-
dances of taxonomic groups were estimated using
the following cut-off values: species (x > 97%), genus
(97% > x > 94%), family (94% > x > 90%), order (90%
> X > 85%), class (85% > x >80%) and phylum (80 >
X > 75%). If the similarity was lower than the specific
cut-off value, the sequence was characterized
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unclassified (un) (Chun et al. 2007); sequences that
did not have any cultivable representatives were shor-
tened as ‘ucl’. The diversity indices and rarefaction
curves were calculated at 97% sequence similarity
using the Mothur platform v.1.43.0 (Schloss et al.
2009). The CLCommunityTM software version 3.46
was used for data visualization. Venn diagrams were
used to compare sediment bacterial taxonomic com-
position between sampling sites (Figure 2).

Out of 17,784 reads, 43% were filtered out during
the quality processing. Altogether, 5944 reads for the
AS sediment, and 4125 reads for the BoB sediment
sample were available for further analysis with a
mean length of approx. 470-480 bp. In marine sedi-
ments, pyrosequencing read numbers varied
between 5000 and 20,000 per sample in previous
studies (Zhu et al. 2013; Choi et al. 2016), the output
of our sequencing approach is in the same order of
magnitude. The taxonomic assignment done using
the SILVA platform (Quast et al. 2012) resulted in clas-
sifying the bacterial sequences into several specific
clades, the EzTaxon-e data analysis (Chun et al. 2007)
was used for species-level taxonomic assignment.

Functional prediction of 16S rRNA amplicons

For the functional prediction of 16S rRNA pyrosequen-
cing amplicons, the OTUs were clustered at 97%
sequence similarity. The OTU table and representative
sequence fasta files were submitted to the Piphillin
pipeline (https://piphillin.secondgenome.com/) (lwai
et al. 2016). The Piphillin algorithm has the advantage
to not rely on phylogenetic trees to predict metage-
nomic contents. It further uses more recent releases
of the functional database Kyoto Encyclopedia of
Genes and Genomes (KEGG, updated October 2018)
and BioCyc as compared to alternative pipelines such
as PICRUSt or Tax4Fun (Narayan et al. 2020). It utilizes
nearest-neighbor matching 16S rRNA amplicons (or
genomes) to predict the representative genomes.
The normalized 16S rRNA copy number of each
genome is inferred using gene content collected in
functional databases (Langille et al. 2013; Iwai et al.
2016; Narayan et al. 2020). The KEGG reference data-
base was used at a 90% cutoff level to predict meta-
bolic functions present in the sequenced microbial
community. The final output of this workflow was
quantified in terms of predicted gene abundances
per number of OTUs per sample. The information
extracted was based on a small fraction of the popu-
lation available from the KEGG database. At 90% simi-
larity cut off, around 338 KEGG pathways were
identified from 156 OTU representatives from the AS
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Figure 2. Venn diagram showing OTU number wise comparison of the phylotypes at different taxonomic level assigned through

the SILVA database.

and 354 KEGG pathways for 469 OTUs from the BoB.
We focused on the KEGG database pathways for nitro-
gen (ko00910), sulfur (ko00920), and methane
(ko00680) turnover, as well as on carbon metabolism
(ko01200) with specific focus on fermentation and
bioenergetics pathway related to carbon fixation, as
they are reported to be prevalent in the OMZ
sediment.

Results and discussion
Sediment biogeochemistry

In the present study, both sampling sites showed
intense oxygen depletion with dissolved oxygen (DO)
concentrations of 2 + 0.4 uM, at bottom waters which
was ~3m above the sediment sampled. In the
shallow zones of the BoB-OMZ and in the AS-OMZ,
the DO concentration sometimes falls below the detec-
tion limit of conventional methods, especially during
the summer monsoon, due to the increased riverine
nutrient loading, coastal high primary production
and increased respiration (Sarma et al. 2013).
Between both sampling sites, bottom water salinity
was comparable, but the temperature was 3°C high

at the AS sampling site, which may be a seasonal or
permanent feature. The sample characteristics of the
collected sediment and near-bottom waters are pre-
sented in Table I. In brief, total organic carbon was
slightly higher in the AS with 3.47%, and 2.24% in
the BoB, TN values were 0.28% and 0.16% in the AS
and BoB, respectively. The TOC/TN ratio was 8.37 in
the AS, and 9.66 in the BoB, thus conditions in the
organic matter pool were rather comparable. Here
the values are in the typical range of OMZ sediments
and higher than non-OMZ surface sediments where
the TOC and TN concentration as low as 0.2 and 0.02
wt. % reported (Pattan et al. 2013). OMZs enhance
the preservation of organic matter, explaining the
reported values of TOC ranging from ~1-2 to 6-7%
(Cowie et al. 2014) and TOC/TN ratios within 7.3-12.3
(van der Weijden et al. 1999). Our data is in line with
those OMZ ranges, with somewhat lower concen-
trations for both, TOC and TN, in sediments of the
BoB. This may result from generally assumed lower
productivity of the BoB waters, compared to the AS
rapid nitrogen burial as described for OMZ sediments
(Robinson et al. 2012), or different activities in reminer-
alization processes (Bohlen et al. 2011). TIC, which was
substantially higher in the AS with 8.11%, compared to
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Table I. Sediment and bottom water characteristics for the samples collected from the northern Indian Ocean OMZ.

Near-bottom water profile

Sampling details Sediment characteristics (CTD)
TOC TIC N CaC03 oM DO Temp Salinity
Station code Date Sampling depth (m) % TOC/TN mM °C PSU
GS1A Feb-2013 197.3 2.01 8.11 0.28 67.56 3.47 8.37 231 15.58 3535
PS1B Aug-2014 2344 1.30 0.29 0.16 241 224 9.66 1.67 12.33 35.019
the BoB with only 0.29%, while the values falls within (52.65%), Planctomycetes (9.36%), Actinobacteria

the range of OMZ sediments, strikingly higher differ-
ence in TIC between the sites could be attributed to
the difference in CaCO; content caused by increased
carbon sequestration (Sarma et al. 2007). Additionally,
meiobenthic fauna with shells may contribute to the
difference in TIC, as this is found to be abundant in
sediments of the AS while not abundant in the BoB
(Ramaswamy and Gaye 2006). Besides, different
microbial communities could explain patterns of car-
bonate precipitation, a possibility which we will
explore in the following.

Benthic bacterial community structure

Between the study sites, the BoB sediments harbour a
more diverse bacterial community than the sediments
of the AS, which is illustrated not only by the general
diversity of taxa and in line with the few available
other studies (Dang et al. 2008; Zhu et al. 2013) but
also corroborated by various diversity measures as pre-
sented in Table Il. Given that our rarefaction analysis
(A1) showed that our sequencing approach was able
to recover ~70% of bacterial phylotypes from the
BoB and 90% from the AS sediments, the diversity in
the BoB is however still rather underestimated and
may be even higher due to the recovery of many
rare OTUs.

The dominant communities and their relative per-
centage remained the same for BLASTN searches
using the EzTaxon-e 16S database, and pairwise align-
ment using the SILVA 132 database. This led to a suc-
cessful in classification of 44 to 48 phyla, 27 of which
were common to both sites. Generally, the dominant
bacterial phyla consisted of Firmicutes (33.08%), Pro-
teobacteria (32.59%), Bacteroidetes (17.48%), and
Chloroflexi (5.52%) in AS sediments and Proteobacteria

(7.25%), Firmicutes (5.5%), Acidobacteria (6.74%) and
Chloroflexi (4.49%) in BoB sediments. Those abundant
taxa contributed >85% to the total bacterial
community.

The dominance of Proteobacteria is well docu-
mented in marine ecosystems (Wang et al. 2012). In
the eastern AS-OMZ surface sediment, nearly 14
phyla were identified in a previous study using the
Sanger sequencing technique, the majority of
which were Proteobacteria (52%), followed by Planc-
tomycetes (12.7%) and Chloroflexi (8.8%) (Divya et al.
2011). Similarly, in another study carried out utilizing
high throughput sequencing confirms Proteobac-
teria to be the dominant phylum making up
70-75% in all six sites within benthic OMZ of AS fol-
lowed by Bacteroidetes. Representative sequences
affiliated to phyla Chloroflexi and Firmicutes were
also recovered in a considerable number (Fernandes
et al. 2018). From sediments collected from off Par-
adeep port, which is roughly 27 nautical miles from
our BoB sampling site PS1B, close to 40 bacterial
phyla were reported using 454 pyrosequencing
approach. The relative contribution of the phylum
Proteobacteria was only 17%, which was lesser
than Bacteroidetes (23%) and Firmicutes (19%) (Pra-
manik et al. 2016) indicating a certain patchiness in
relative abundance but an overall comparability of
the bacterial community composition in the BoB
possibly resulting from factors including DO
(Stewart et al. 2012), the availability of nutrients or
organic carbon (Fierer and Jackson 2006). The BoB
receives surplus river water run-off (McCreary Jr
et al. 2013), which might be a reason for the
observed differences in diversity, as two stations
had very different nutrient chemistry, else compar-
able depth and oxygen depletion levels.

Table II. Summary of pyrosequencing results and statistical analysis of bacterial sequences retrieved from the northern Indian

Ocean OMZ surface sediment samples.

OTU richness®

OTU diversity®

Sample name Optimized reads Observed Chao1 ACE Jackknife Shannon Simpson Good's coverage®
GS1A 5944 955 2506 4305 3450 437 0.934 89.3%
PS1B 4125 1889 4447 7616 6242 6.97 0.998 69.5%

?0TUs (operational taxonomic unit) were calculated using Mothur (3% distance).

PGood’s coverage is proportional to non-singleton phylotypes.
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The candidate phyla GN02, OD1, TM6, TM7, and
WS3, were prevalent in ESP (eastern south pacific)
pelagic OMZ microbiome as well, implying that they
have an essential role in OMZ nutrient cycling (Ulloa
et al. 2013; Ganesh et al. 2014). Candidate phyla
GNO02, OP3, OP8, were unique to both sampled OMZs
sediments of the northern Indian Ocean. A total of 13
candidate phyla were obtained in our study. The
prevalence of such ‘bacterial dark matter’ highlights
the need to decipher their coding potential, as they
cannot be subjected to functional predictions due to
a lack of cultivable representatives.

A complete list of taxa is presented in the Sup-
plementary information A2 obtained through SILVA
portal. A3 and A4 represents Krona chart of the AS
and the BoB sediment bacterial community structure
obtained through EzTaxon-e portal. Interestingly,
only 28.48% of the identified OTUs were shared
between the AS and the BoB, on the genus level (simi-
larity were between 64.29% on the phylum level),
leaving 53.10% of unique OTUs in the BoB and
18.42% in the AS (Figure 2). This suggests that the
two sediments, while biogeochemically similar,
harbour a largely different bacterial community.

The analysis of 58 bacterial classes recovered from
our data set showed that there >50% similarities
between the phylotypes at the two sites which
makes up ~97% of bacteria. The dominant classes in
the AS sediment include Bacilli (32.96%), Gammapro-
teobacteria (18.34%) and Bacteroidia (17.19%). In the
BoB sediment, Gamma-, Alpha-, and Delta-Proteobac-
teria (23.68%, 19.01%, 9.26% respectively) were most
abundant, followed by Planctomycetacia (6.72%).
Those clades together contribute between 60-70% of
the total in the BoB sediment. Dominant bacterial
orders recovered exclusively from the AS-OMZ

)

Relative shusdanes

DuDDDjDDJDHDJDiﬂﬁuﬂgﬂiﬂ‘Illlllliﬂﬁ

include Bacillales (32.94%), majorly Planococcaceae
(26.06%) followed by Flavobacteriales (17.14%), and
Oceanospirillales (12.85%). In BoB sediments, Steroido-
bacterales (7.05%) and Rhizobiales (11.03%) form the
most dominant groups. Exploring the taxonomy in
more detail, relative abundances for fermenting organ-
isms such as Planococcaceae, Flavobacteriaceae, Bacil-
laceae, Oceanospirillaceae, Rhodobacteraceae, and
Vibrionaceae are strikingly higher in the AS sediment
compared to the BoB amongst the abundant clusters
(abundant >1%; Figure 3). Those clades are mainly
described as heterotroph degraders, mostly able to
ferment (Glockner et al. 1999; Yakimov et al. 2003).
The presence of Alcanivoraceae in the AS sediment,
and their absence in the sediment of the BoB, could
be an important factor in the precipitation of CaCOs;,
because of their metabolic capability to use ammonifi-
cation and carbonic anhydrase activity to induce rapid
calcium carbonate precipitation (Krause et al. 2018). In
the BoB, abundant clades consist mostly of Pseudomo-
nadaceae first described in a deep sea sediment from a
Japanese trench [clone AB013829, (Yanagibayashi
et al. 1999)] and Desulfobacteraceae, both of which
are described as denitrifier groups. Desulfobacteraceae
often use acetate (Dyksma et al. 2018) but are also
know to degrade other organic compounds (Kimmel
et al. 2015). Besides those clades, different proteobac-
terial clades were found, as well as the purple non-
sulfur bacteria Rhodobacteraceae and Rhodospirillia-
ceae, the latter of which are able to fix molecular nitro-
gen (Madigan et al. 1984). The double pie-chart
provides an overview of both sequenced bacterial
communities at the class and family level (Figure 4).
In AS sediments, the most abundant bacterial genus
was Paenisporosarcina sp. (24.06%), followed by Sale-
gentibacter sp. (17%), and as per EzTaxon-e database

OPSIE WGSIA

Figure 3. Dominant bacterial taxa retrieved at 1% cut-off based on pairwise alignment in the SILVA SSU database release 132.
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GS1A, AS-OMZ PSIB, BoB-OMZ

Class
B Gammaproteobacteria [0 Bactercidia B nNKB19 ¢ B pg7s77i0 c
B eacilli W oM190_c B HM243796 ¢ M wsic
B Alphaprotecbactearia M Thermoleophilia B Bacteria_uc ¢ B Ap179666 c
B Flavobacteria M GNOoZ c B HQ645210 ¢ W Av345499 ¢
B Dpeltaprotecbacteria Brocadia_c "~ Fimbriimonadia SAR406_c
I Planctomycetacia M Gemmatimonadetes_c B DQ404824 c WM8ag _c
B Anaerclineae EU795203_c B FP245540_c B 1n475307 ¢
| EU374107 c B uTos ¢ B EU048619 ¢ M Planctomycetes_uc
B Clostridia M spirochaetes_c B ore41 FN820300_c
! Thermoanaercbaculum_c | GU196224 ¢ I Solibacteres | | Chioracidobacterium_c
M Nitrospira_c B Mollicutes Deinococci B Acidobacteria_uc
B Acidimicrobiia Cytophagia B F547054_c ETC
B Phycisphaerae B Epsilonprotecbacteria W isic
B caldilineae Caldithrix_c B Coricbacterila
. 295718 ¢ | | Vampirovibrio_c B Thermomicrabia
B Gusss020 ¢ M DQs513070_c B Opitutae
Actinobacteria_c B sap202 c B Fusobacteria_c
M Chroobacteria I Rhodothermus_c M JF737898_c
B Dehalococcoidetes Erysipelotrichi | | AM712334_c
B HM243779 ¢ B DQ394940_c AFD50605_c
GU302492_c B Eu3ssiel_c B DQ404773_c
M ors c 0oD1_c B HQ183952 ¢
B GQ396871_c M avs32588 ¢ B 10BAV c
B Rubrobacteria B TM7 ¢ B Proteobacteria_uc
B TMe_c [ Betaprotechacteria B F1478799 c
B Eu700145 ¢ M Eu3ss751 ¢ DQ513087_c
EUGBE603 ¢ HQBE81992 ¢ B Tenericutes_uc
B ignavibacteriae B FP245541 ¢ Verrucomicrobiae
I sphingobacteria B AQsL_c EU246057_c
B GQ246394_c EU488087_c
Family
M ABD13829 f . Andersenielia_f B Thermoanaerobaculum_f B Euesss03_f
B oceanospirillaceas B rarvularculaceae M Thermodesulfovibrio_f B 1gnavibacteriaceae
= Alcanivoracaceae B EU799183 f B Nitrospiraceae Saprospiraceae
" Vibrionaceae M Flavobacteriaceae [0 JF747669 f AF407728_f
B HQ857665_f M cusi7saz f "l DQ395502_f W AB630582_f
B Coxiellaceas B Desulfobacteraceae DQ396300_f | GU145499 f
B Aso15252 f GQ246357_f M Microthrix_f EUB81211 f
AY532574_f B sandaracinaceae B AM991247_f | EU795203_f
W ers73277_f B Desulforhopalus_f Phycisphaeraceae B aF323761 F
T AJ966605_f B arF269002_f B HQes7a3s_f B EF574345 f
B psychromonadaceae B Dpesulfuromonadaceae B HMoe6343_f B sulfurovum_f
FRE70376_f M Desulfobacterium_g1_f ! Caldilineaceae ETC
B omeso_f AJ306774_F M DQ394964 f
B Legionellaceae EU287221_f B DQ394955 F
M F1712598 f B rFM253643_f B Eusss730_f
B Ectothiorhodospiraceae M DQ404777_f W 795718 f
B Arenicella_f ] Nitrospinaceae B Eu3z74070_f
B HQ191045 f B Gu208445_f B Gusssoz0_f
B Chromatiaceae B av771942 f B ABD21325_f
B Planccoccaceas B Pianctomycetaceae B Prochlorococcaceae
B Bacillaceae B am745150_f B Gus53783_f
B Paenibacillaceae B F455877_f M Eussss21 f
Rhodobacteraceae M Gu4ss152_f M AM997925_f
! Hyphomicrobiaceae FI517056_f B AB530233 f
B Rhodospirillaceae B cus7a107 f W ors f
W AM997334 f M EU374093 f B GQ3%es71 f
Cohaesibacteraceas B Clostridiaceae W AB240334 f
Ul Bauldia_f ' Peptostreptococcaceae B Gaiellaceas
B Phylicbacteriaceae B Ruminococcaceae B EU700145_f
W JF344531 f B HM445331 f

Figure 4. Double Pie chart showing bacterial community composition at the class and family level from the sampling locations
based on the EzTaxon-e database.
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these were further identified as Paenisporosarcina quis-
quiliarum and Salegentibacter mishustinae. Those
groups were followed by Amphritea (9.02%), Oceani-
bulbus (4.27%), Alcanivorax (3.82%), Photobacterium
(2.76%) and Salipaludibacillus (2.61%). All of these
clades are unique to the AS sediment and not
present in the BoB sediments. In the BoB sediments,
the most abundant taxa are Woeseia (6.98%) and Gam-
maproteobacteria_ucl (6.5%), with the remaining
groups being represented with less than 3%.

The clade Woeseiaceae/JTB255 is recognized as the
most abundant clade in marine sediment, having a
cosmopolitan distribution. Moreover, analysed meta-
genomes of JTB255 are known to encode the trun-
cated denitrification pathway to nitrous oxide
(Mufmann et al. 2017). Since denitrification mediated
nitrogen loss is reported to be dominant in Arabian
Sea OMZ, we expected to get more hits in the analysed
amplicon dataset (Ward et al. 2009). Though their
occurrence was not detected, few representative
sequences of JTB31 and JTB38 were identified that
might play a similar role.

Predicted functional ecology

For a large proportion of the amplicons, functions
could not be assigned clearly, which leads to a rather
conservative, and qualitative instead of quantitative
estimate of the metabolic potential present at the
two sites. The predictive functional profiling of 16S
rRNA sequences has identified a high proportion of
genes involved in methane cycling, as generally
typical for sediments underlying OMZ waters (Fulwei-
ler et al. 2007; Bertics et al. 2013; Gier et al. 2016),
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followed by genes involved in sulfur and nitrogen
cycling (Figure 5). Methane turnover rates are rather
high in anoxic shelf sediments and were reported to
be correlated with the availability of labile organic
matter, and concurrent with sulfate reduction
(Maltby et al. 2016), explaining the predicted abun-
dance of genes involved in methane turnover in our
samples. Despite the difference in diversity between
the two sampling sites, almost all predicted gene func-
tions were identical suggesting an overall similar meta-
bolic potential in the two different sediments.
Nitrogen cycle: In northern Indian Ocean OMZs, nitro-
gen cycling is reported to be very active (Naqvi et al.
2006). At both our sampling sites, genes coding for
major nitrogen cycle pathways including nitrogen
fixation, dissimilatory nitrate reduction to ammonia
(DNRA), nitrification, and denitrification were predicted.
Interestingly, anammox genes were not predicted for
either site despite the presence of planctomycetes in
our dataset (Figure 6). This may be either due to the
low number of species-level identifiable OTUs or to a
true absence of anammox-capable planctomycetes as
consistent with OMZ sediments from the seasonally
anoxic Eckernforde Bay in the Baltic Sea and sediments
underlying the Peruvian OMZ (Dale et al. 2011; Bertics
et al. 2013). While generally planctomycetes were in
the sequence pool, hits corresponding to anammox
planctomycetes were indeed exceptionally low at our
sampling sites, accounting for 0.03 and 0.3% in the AS
and BoB, respectively. A sequencing related bias
could, however, have led to an underestimation of Sca-
lindua-anammox bacteria as a systematic underrepre-
sentation by sequencing of 16S rDNA v1-v3 regions
has been reported (Penton et al. 2006). Specifically,
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Figure 5. Relative distribution of redox metabolic KEGG pathways identified from our 16S rRNA amplicon pyrosequencing dataset

utilizing the Piphillin algorithm.
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Figure 6. Proposed pathway for OMZ Nitrogen cycling in sediments of northern Indian Ocean OMZ, and the abundance of
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the functional marker gene coding for the hydrazine
oxidoreductase was not predicted from our 16S rDNA
data. This suggests that the contribution of anammox
to the nitrogen cycle in the Indian Ocean sediments,
at least at our sampling sites, is rather low similar to
the pelagic OMZ of the AS where denitrification is
reported to be dominant over anammox (Ward et al.
2009), and the BoB where anammox as well as denitrifi-
cation could not be detected (Bristow et al. 2017). As
Planctomycetales are known to encode a large
number of sulfatase genes, which makes them as a
specialist for the initial breakdown of sulfated hetero-
polysaccharides (Wegner et al. 2013), their role in the
Indian Ocean sediments could rather be carbon
capture in the sediments (Arango et al. 2007; Shao
et al. 2010; Dale et al. 2011; Jensen et al. 2011). Here,
the predicted gene abundance was 848 and 2901 for
AS and BoB microbiome, the predominant form being
arylsulfatase, respectively, contributing 65-85% of the
sulfatase pool.

The global annual denitrification rate in sediment
would be approximately 200 Tg N, and the majority
contributed from sediments underlying OMZ, where
its reported two to four times higher (Devol 2015).
Therefore, nitrogen loss processes would be expected
to take place in both, sediments of the AS and the BoB.
Denitrification and sulfite reductase genes were preva-
lent in our prediction possibly favouring sulfur driven
autotrophic denitrification (Shao et al. 2010), and as
previous studies suggested heterotrophic denitrifica-
tion (Arango et al. 2007). Other denitrifiers recovered
from our sequence dataset are Oceanospirillales, Chro-
matiales, Nitrospirales, Syntrophobacteriales, and NB1-
j which are known to encode denitrification genes
including nirS, norB and nosZ (de Voogd et al. 2015),
and contributed 14.05% in the AS sediment, and
4.46% in the BoB sediment, respectively. Similarly, Fla-
vobacteriales are known denitrifiers (Horn et al. 2005),
and are abundant in the AS with 17.14% of all 16S
rDNA sequences.
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Recent studies have also linked methane oxidation
to nitrite-based denitrification in the Candidatus
phylum NC10 (Padilla et al. 2016). This was supported
by studies carried out in a freshwater reservoir, where
methane stimulated massive nitrogen loss (Naqvi et al.
2018). The Steroidobacter clades which make up 7% of
the BoB-OMZ bacterial community are also known to
perform denitrification coupled with methane oxi-
dation (Liu et al. 2014). Though, our predictive func-
tional profiling confirms denitrification is dominated
over anammox in the northern Indian Ocean OMZ as
reported (Ward et al. 2009; Sarkar et al. 2020), a clear
link with methane oxidation cannot be established,
since the BoB-OMZ is not an active denitrification
site. Further, isotopic studies carried out by Shirodkar
et al. (2018) in the seasonally anoxic Shelf waters of
the Arabian Sea did not show any effect of additional
CH; amendments on N, production through
denitrification.

DNRA was predicted as a potential remineralization
pathway in both basins of our study. In seasonally
hypoxic Baltic Sea sediments, DNRA accounted for
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almost 75% of benthic nitrogen flux (Dale et al.
2011). In contrast to the other nitrogen cycle genes,
the nifHDK operon coding for the functional unit of
the key gene for nitrogen fixation, the nitrogenase,
was predicted in higher abundance in the BoB com-
pared to the AS, with BoB-nif being five times as
many as AS-nif. This is consistent with the higher pro-
portions of known sedimentary nitrogen fixers, such as
Desulfobacteraceae and Rhodospirilliaceae. The pres-
ence of nitrogen fixers in sediments underlying OMZs
has been documented for several regions, including
the upwelling system off Mauretania, the Baltic Sea
and the eastern tropical South Pacific shelfs, and nitro-
gen fixing microbes have been shown to be active
although at low rates (Bertics et al. 2013; Gier et al.
2016, 2017).

Sulfur cycle: For the sulfur cycle in both, the AS and
the BoB, genes for the assimilatory pathway of sulfate
reduction were predicted, as well as sulfur oxidation
genes of the sox operon (Figure 7) in line with a pre-
vious study which identified diverse sulfur reducing
bacterial and archaeal OTUs in the AS (Fernandes
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Figure 7. Proposed pathway for OMZ Sulfur cycling in sediments of northern Indian Ocean OMZ, and the abundance of enzymes

with coding genes are indicated in box, where ‘blue’ and ‘red’ den

otes AS and BoB gene count. Expansion of abbreviation are as

follows: aprA: Adenylylsulfate reductase, subunit A; dsrA/dsrB: Dissimilatory sulfite reductase subunit-alpha/beta; dsrC: Dissim-
ilatory sulfite reductase related protein; cysC: Adenylylsulfate kinase; cysH: Phosphoadenosine phosphosulfate reductase; psrA:

Thiosulfite reductase; rDsr: Reverse dissimilatory sulfite reductase;

sat: Sulfate adenylyltransferase; soeA: Sulfite:quinone oxido-

reductase; sir: Sulfite reductase (ferredoxin); soxB: S-sulfosulfanyl-L-cysteine sulfohydrolase; soxC: Sulfane dehydrogenase; soxD:
S-disulfanyl-L-cysteine oxidoreductase; soxX/A: L-cysteine S-thiosulfotransferase; soxY/Z: Sulfur-oxidizing protein; sseA: Thiosul-
fate/3-mercaptopyruvate sulfurtransferase; sqr: Sulfide:quinone oxidoreductase. (Color online)



et al. 2018). In our AS dataset, a potential player in the
sulfur cycle could be Sulfitobacter dubius, which was
represented with 4.32% of all OTUs. All known
species of the genus Sulfitobacter were isolated from
marine habitats and are known to perform sulfite oxi-
dation (Sorokin 1995; Long et al. 2011). Thermodesulfo-
vibrio (phylum Nitrospira) accounted for ~1% of
sequences at both sites are known sulfate reducers
and have been identified from the eastern tropical
South Pacific OMZ, before (Schunck et al. 2013).
Sequences corresponding to sulfur reducers like Desul-
fobacterales (AS: 0.87%, BoB: 2.57%) and Syntropho-
bacterales (AS: 0.67%, BoB: 1.21%) were also
recovered from our dataset and were shown to be
abundant in sediments of the Black Sea sulfate-
methane transition zone as well as in the Arabian Sea
OMZ in both pelagic and benthic realms (Fuchs et al.
2005; Leloup et al. 2007; Fernandes et al. 2018).
Carbon fixation: In the BoB sediment, around 1.75%
of gene families were predicted to perform photosyn-
thesis, and major contributors would possibly be Chro-
matiales (0.07%), Rhodospirillales (0.03%), and
members of phylum Cyanobacteria (1.65%). Chroma-
tiales, a group of purple sulfur bacteria, can perform
anoxygenic photosynthesis (Manske et al. 2005). Simi-
larly, Rhodospirillalesis primarily chemoorganotroph
and photoheterotroph (Luo and Moran 2015), can
also perform anoxygenic photosynthesis (Manske
et al. 2005). It is interesting to note that around 68
Cyanobacterial sequences belonging to order
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Chroococcales of genus Prochlorococcus were
retrieved from BoB sediment, where water column
depth was ~245 m, but only one representative from
the AS sediment, which was located at ~200 m
depth. The observed Chroococcales, are assumed to
be a low-light adapted group (West et al. 2001) justify-
ing their occurrence in deeper sites, where light pen-
etration is negligible. Since these groups are also
known to fix nitrogen (Van Goethem et al. 2017), will
justify the observed difference in nifH gene abun-
dance. It may also be that this is sunk out debris,
with some preserved DNA. The key enzymes respon-
sible for energy metabolism are presented in Table
lll. In particular, the higher predicted abundance of
dehydrogenase enzymes responsible for oxidation of
organic matter in the AS points towards a difference
in carbon metabolism in the two regions. This is
most likely due to the increased availability of carbon
in the AS, however, as proposed earlier (Orsi et al.
2017), more efficient organic carbon recycling in the
AS may over geological timescales contribute to devel-
oping a stronger and more persistent functional
anoxia.

Carbon remineralization: As indicated by the high
TIC concentration in the AS sediment, carbon reminer-
alization was very active due to the increased avail-
ability of organic carbon (Yu et al. 2018). About 20%
of the identified bacteria were common soil/sediment
inhabitants with a prime role in remineralization of
diverse organic carbon compounds (Schimel and

Table lll. Distribution of key enzymes relevant in energy metabolism in the northern Indian Ocean surface sediments predicted

from 16S rRNA genes.

Energy metabolism KEGG Enzymes GS1A  PS1B
Kreb cycle, NADH + H+ K00161  pyruvate dehydrogenase E1 component alpha subunit [EC:1.2.4.1] 836 454
Kreb cycle, NADH + H+ K00627  pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) 1279 1108
[EC:2.3.1.12]
Kreb cycle, NADH + H+ K00382  dihydrolipoamide dehydrogenase [EC:1.8.1.4] 2476 1889
Kreb cycle, NADH + H+ K00031 isocitrate dehydrogenase [EC:1.1.1.42] 993 1345
Kreb cycle, NADH + H+ K00164  2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2] 895 850
Kreb cycle, GTP K01902  succinyl-CoA synthetase alpha subunit [EC:6.2.1.5] 1064 952
Kreb cycle, FADH2 K00239  succinate dehydrogenase / fumarate reductase, flavoprotein subunit [EC:1.3.5.1 902 906
1.3.5.4]
Kreb cycle, NADH + H+ K00024 malate dehydrogenase [EC:1.1.1.37] 1051 881
Glycolysis, ATP K00927  phosphoglycerate kinase [EC:2.7.2.3] 898 953
Glycolysis, ATP K00873  pyruvate kinase [EC:2.7.1.40] 955 1012
Glycolysis, NADH + H+ K00134  glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] 2125 1176
Glyoxylate cycle, NADH + H+ K00024 malate dehydrogenase [EC:1.1.1.37] 1051 881
Glyoxylate cycle, FADH2 K00240 succinate dehydrogenase / fumarate reductase, iron-sulfur subunit [EC:1.3.5.1 916 926
1.3.5.4]
Pentose phosphate pathway, NADPH K00036  glucose-6-phosphate 1-dehydrogenase [EC:1.1.1.49 1.1.1.363] 678 856
Pentose phosphate pathway, NADPH K00033  6-phosphogluconate dehydrogenase [EC:1.1.1.44 1.1.1.343] 823 807
Ethylmalonyl pathway, NADP+ K14446  crotonyl-CoA carboxylase/reductase [EC:1.3.1.85] 230 276
Ethylmalonyl pathway, GTPase activity K01847  methylmalonyl-CoA mutase [EC:5.4.99.2] 1386 669
Ethylmalonyl pathway, NADP+ K00023  acetoacetyl-CoA reductase [EC:1.1.1.36] 309 345
Ethylmalonyl pathway, ADP + Pi K01965  propionyl-CoA carboxylase alpha chain [EC:6.4.1.3] 575 329
Ethylmalonyl pathway, ADP + Pi K01966 propionyl-CoA carboxylase beta chain [EC:6.4.1.3 2.1.3.15] 746 351
Malonate semialdehyde pathway, ADP +Pi  K01961 acetyl-CoA carboxylase, biotin carboxylase subunit [EC:6.4.1.2 6.3.4.14] 1212 938
Propanoyl-CoA metabolism, ADP + Pi K01965  propionyl-CoA carboxylase alpha chain [EC:6.4.1.3] 575 329
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Figure 8. Percentage distribution of key enzymes with coding genes identified in bacterial fermentation (Ramos et al. 2000;

Eschbach et al. 2004).

Schaeffer 2015). These include Acidobacteria, Actino-
bacteria, Bacteroidetes, and Gemmatimonadetes
(Janssen 2006). Similarly, Anaerolinaeles (phylum
Chloroflexi), which contributed 2-3% of the total hits
in our dataset, have also been identified with a
similar role and were specific to areas that show
incredibly low or zero oxygen. In addition, genes
responsible for N-glycan degradation (ko00511) were
predicted to occur almost 12 times more often in the
AS than in the BoB sample. These genes play a role
in cell adhesion and sequestration (Varki and
Gagneux 2017). The relative distribution of key
enzymes and genes specific to gram-positive and
gram-negative bacterial fermenters were compared
based on previous reports (Ramos et al. 2000;
Eschbach et al. 2004) (Figure 8). Their predicted abun-
dance was higher in AS sediment than in BoB sedi-
ments. The connected more complete carbon
remineralization which could add an explanation to
why the AS-OMZ is more anoxic than the BoB-OMZ
as previously suggested (Orsi et al. 2017).

Conclusion

We compared bacterial communities from two sites in
the northern Indian Ocean OMZ, in the BoB off Par-
adeep and a site off Goa in the AS. Less than one-
third of the phylotypes were shared between the
two sites, leaving a large individual proportion of the
bacteria for each site. A higher diversity has been
identified from the BoB, compared to the AS,
however, our functional prediction identified high
abundances of typical heterotrophic degraders in the
AS, that were only represented in low proportions or
absent in the BoB. We further identified denitrifiers,

DNRA bacteria and sulfur cycle bacteria at both sites
and predicted the presence of their functional genes.
The higher functional diversity for organic matter
degradation with fermentation in addition to denitrifi-
cation and sulfur-compound dependent remineraliza-
tion may explain, why the AS OMZ is generally more
anoxic. Here, the variability in carbon respiration path-
ways may allow for a more efficient or complete respir-
ation along the electron tower, thus consuming more
oxidized compounds. The abundance of Alcanivorax-
like bacteria in AS sediments may provide an expla-
nation for high CaCOj3 precipitation, as this organism
has been described to perform this process rapidly
when organic nitrogen is available as it is at our
sampling site in the AS. A notable finding was the
absence of anammox bacteria at both sites. Notably,
we predicted nitrogen fixation genes from BoB sedi-
ments but not from AS sediments, possibly resulting
from higher nitrogen inputs from the water column
in the AS.

Despite the limitation of this study with regard to
our sample number, we could contribute a first assess-
ment of bacterial diversity and functionality in coastal
sediments of the two Indian Ocean basins, as such, we
hope to contribute to the general understanding of
how these basins function and why they are so
different in their biogeochemistry.
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Anammox bacterial diversity and abundance were
studied from the organic-rich hypoxic sediments of
the Arabian Sea utilizing the partial 16S rRNA, and
hydrazine synthase, hzsA and hydrazine oxidoreduc-
tase, hzo genes. Among all the clades obtained, phylo-
typic diversity was high within the Candidatus genus
Scalindua with an abundance of <7 x 10* copies/g dry
wt. As such, Scalindua is known to play a significant
role in fixed nitrogen removal through anaerobic
ammonium oxidation (anammox) pathway. From these
analyses, it is inferred that searching for /hzo gene
yields robust evidence for detecting anammox com-
munity than the widely used 16S rRNA gene marker.

Keywords: Anammox, community gene-based profil-
ing, hydrazine, hypoxic sediments, Scalindua.

THE oxygen-depleted zones (ODZs) are important sites of
fixed nitrogen loss, as the scarcity of oxygen, a primary
electron acceptor, leads to increased utilization of the
next preferred electron sources'. Anaerobic ammonium
oxidation (anammox) and denitrification are the two ma-
jor microbial pathways operating in such an environment
which are responsible for nitrogen removal®. One of the
questions being examined in the perennial ODZ localized
within the Arabian Sea and the eastern tropical north and
the South Pacific Ocean is whether anammox is dominant
over denitrification®, and is chiefly inquired utilizing
chemical signatures. The anammox reaction, in general, re-
quires ammonia (NH3) and nitrite (NO3) as substrates in a
stoichiometric ratio of approximately 1 : 1 and proceeds via
two intermediates, nitric oxide (NO) and hydrazine (N,H,),
and releases di-nitrogen gas (N,)*. Understanding molecular
pathways of anammox reactions led to gene-targeted stu-
dies, which further made anammox bacterial identification
and quantification possible even at species level™®. Yet such
information is not utilized properly, and those who
attempted molecular characterization have limited them-
selves to one or two primer sets alone, that too without
considering the primer bias.

*For correspondence. (e-mail: jovithalincy @gmail.com)
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The nitrogen loss contribution of anammox to the total
denitrification in marine sediments can range from near
0% to 80%, especially in deposits underlying ODZ’. In
the southeastern Arabian Sea, benthic nitrogen metabo-
lism is driven by sinking organic matter® which is excep-
tionally high during the southwest monsoon period’. The
prevailing conditions are assumed to favour heterotrophic
denitrifying communities that rely on organic sources'’.
Hence the possible occurrence of a chemolithoautotroph
like anammox microbes is not studied thoroughly. Be-
sides ammonium ion available in situ'', dissimilatory
nitrate reduction to ammonia (DNRA) is reported'. In the
Oman coast of the Arabian Sea, a coupling of DNRA to
anammox resulted in intense nitrogen loss'?, suggesting
that anammox occurrence is controlled by the availability
of substrates, and the dominance of denitrifiers, in partic-
ular, cannot limit anammox bacterial abundance in ODZ.

In comparison to the denitrifying microbial communi-
ty, little is known about the anammox community. All
identified anammox clades have monophyletic origin and
are classified under bacterial phylum Planctomycetes and
order ‘Brocadiales’"”. To date, seven anammox genera
are reported'” '’ Ca. Brocadia, Ca. Kuenenia, Ca. Sca-
lindua, Ca. Anammoxoglobus, Ca. Jettenia, Ca. Brasilis
and Ca. Anammoximicrobium (placed under separate
order Pireullulaceae). Genus Scalindua is the most diverse
as well as the dominant anammox community identified in
the marine environment. It is characterized as a separate
sub-group, as its distribution is primarily governed by
high salinity™. The phylogenetic 16S rRNA marker gene
and functional markers targeting hydrazine genes, a bio-
marker unique to anammox reaction, have been success-
fully applied and tested in various habitats to understand
the anammox community structure™>"-%,

In the present study, we utilized five well-established,
highly specific anammox-specific primer sets to target
partial 16S rRNA, hydrazine synthase gene subunit A
(hzsA) and hydrazine oxidoreductase gene (/zo). The
functional gene primers are known to target both Scalin-
dua and non-Scalindua anammox communities, whereas
the 16S rRNA primer specifically targets the Scalindua-
like anammox community. We screened for multiple
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Table 1. Details of PCR primers used in the present study
Primary melting

Gene target Use Primer Sequence Reference Base pair  temperature

Scalindua 16S rRNA  Clone library Brod541F GAGCACGTAGGTGGGT TTGT 29 719 59
Brod1260R  GGATTCGCTTCACCTCT CGG

Anammox hzo Clone library HZOF1 TGTGCATGGTCAATTG AAAG 30 1000 53
HZORI1 CAACCTCTTCWGCAGG TGCATG

Anammox 16S IRNA  qPCR Brod541F GAGCACGTAGGTGGGT TTGT 33 279 60
Amx820R AAAACCCCTCTACTTAGTGCCC

Anammox AzsA qPCR hzA1597F WTYGGKTATCARTATG TAG 5 261 60
hzA1857R AAABGGYGAATCATAR TGGC

zo_cluster2 for qPCR hzocl2aF GGTTGYCACACAAGGC 32 289 60
non-Scalindua hzocl2aR1 TYWACCTGGAACATAC CC

Cloned gene fragment  Sequencing PCR MI13F GTTTTCCCAGTCACGA C 59 Variable 50

MI13R CAGGAAACAGCTATG AC

genes to assess phylotypic diversity of anammox com-
munity, including the genus Ca. Scalindua using multiple
sets of primers that targeted to amplify functional
(anammox-specific) and ribosomal (taxonomy-specific)
fragments and are assumed to occur in high diversity and
abundance in oxygen-depleted, organic-rich surface se-
diments of the southeastern Arabian Sea. In parallel, we
also tested the possible occurrence of non-Scalindua
anammox community. To our knowledge, there are no
previous reports from the benthic ODZ of the Arabian
Sea exclusively targeting Scalindua, a dominant anammox
bacterial genus.

Materials and methods
Sampling details

The sediment sample was collected during the SSD-014
cruise of R V Sindhu Sadhana from the Arabian Sea at
around 600 m water-column depth (9°57'N, 75°32°E).
Sampling was carried out in September 2015, which
marks the end of the southwest monsoon period. The Van
Veen Grab sampler was used for sediment sample collec-
tion. The samples were handled aseptically and preserved
at —20°C until further analysis. Temperature and salinity
profiling of the sampling location was carried out using a
Sea-Bird Electronics CTD (conductivity—temperature—
depth; model SBE9), fitted with Niskin/Go-Flo bottles.
The dissolved oxygen (DO) profile of the location was
also obtained using a calibrated sensor (RINKO from
ALEC, Japan) attached to the CTD unit.

Chemical characterization of sediment

The sediments were freeze-dried, homogenized and
ground to a fine powder in an agate mortar before analy-
sis. Total carbon (TC) and total nitrogen (TN) were ana-
lysed using a CN analyser (FISONS NA1500)%. Total

CURRENT SCIENCE, VOL. 120, NO. 4, 25 FEBRUARY 2021

organic carbon (TOC) was determined using a colorime-
try-based wet oxidation method with high reproducibi-
lity*. Total inorganic carbon (TIC) was estimated by
subtracting OC from TC®. To estimate organic matter
(OM), TOC was multiplied by Van Bemmelen’s factor
1.724, based on the assumption that humidified OM of
the soil contains 58% carbon, but it could vary from 40%
to 60% (ref. 26). For CaCOjs calculation, TIC was multip-
lied by 8.33 to obtain the relative percentage”. The
OC/TN ratio was converted into molar ratio by multiply-
ing with a factor 1.167, derived from the atomic weights
of nitrogen and carbon®’.

Metagenomic analysis

Total genomic DNA was extracted from 500 mg of the
freeze-dried sediment samples using the Fast DNA™
SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA,
USA), and for cell lysis the Fastprep 24 cell disruptor
was used based on the manufacturer’s instructions.
Fastprep is one of the most successful and efficient sedi-
ment DNA extraction methods that yields reasonably
good DNA quality and quantity®®. The purified DNA was
quantified using a nanodrop 2000 spectrophotometer
(ThermoScientific, USA) and visualized on an agarose
gel (0.8%) to determine the quality of the extracted DNA.
The gel was viewed using the Alphalmager Gel docu-
mentation system after staining with ethidium bromide
(EtBr). PCR was carried out using Scalindua-specific 16S
rRNA primer set, Brod541F/Brod1260R (ref. 29) and
anammox primer set HZOF1/HZOR1 for hydrazine
oxidoreductase gene®. Table 1 lists the primers used in
the present study. The PCR conditions maintained were
as follows: initial denaturation at 95°C for 5 min, 35
cycles of denaturation: 94°C for 60 sec, annealing tem-
perature was 59°C for 16S rRNA and 53°C for hzo genes
for 60 sec, extension: 72°C for 90 sec, followed by a final
extension at 72°C for 10 min. The PCR reaction was car-
ried out in a 0.2 ml reaction tube in a final volume of
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50 ul. The reaction mix contained 1x PCR buffer,
1.5 mM MgCl,, 10 mM dNTPs, 10 pM each of forward
and reverse primers, and 0.32 U of Taq polymerase en-
zyme. About 1 ng of template DNA that was diluted to
0.1-0.2 ng/ul was used. All PCR components were pur-
chased from Genei, Bangalore.

PCR products were purified prior to TA (thymine—
adenine) cloning using the GenElute™ PCR clean-up kit
(Sigma-Aldrich, USA) and quantified. Cloning was
performed using the pGEM®-T Easy Vector System
(Promega, USA) based on the manufacturer’s instructions.
Positive recombinant was screened using the X-gal-IPTG
LB indicator plate amended with 100 ug/ml ampicillin.
The transformation efficiency for anammox /zo and 16S
Scalindua was 9 x 107 and 1.9 x 10® cfu/ug DNA respec-
tively. Plasmid extraction was performed using GenElu-
te™ Plasmid Miniprep kit (Sigma-Aldrich, USA). Insert
size was checked using M13F/M13R primer as well as
targeted primers. The positive clones were sequenced us-
ing ABI 3130XL genetic analyzer (Applied Biosystems,
USA).

Sequence analysis and processing

Sequence quality was checked using SeqScanner software
v.1.0 (Applied Biosystems, USA), 2005. Good-quality
sequences were further screened for vector contamination
through the NCBI VecScreen portal (https:/www.ncbi.
nlm.nih.gov/tools/vecscreen/) and edited using BioEdit
software v.7.2.6.1. Sequence similarity search was car-
ried out using the NCBI BLAST algorithm. Misaligned
sequences were corrected using sequence massager online
(http://biomodel.uah.es/en/lab/cybertory/analysis/massager.
htm). Chimera check was performed during the sequence
submission step at GenBank. Most similar hits, as well as
standard reference sequences, were included for phyloge-
netic tree construction. Sequences with a length of
2500 bp were used for diversity and phylogenetic analy-
sis. The sequences were aligned using CLUSTAL-W
multiple sequence alignment tool in BioEdit software
v.7.2.6.1. The phylogenetic tree was constructed using
MEGA X software neighbour-joining method with 1000
bootstrap replicates. For functional genes, the nucleotide
sequences were first translated to amino acids through the
ExPASY online portal (https://web.expasy.org/translate/)
prior to detailed analysis.

Statistical analysis

Clones were clustered into operational taxonomic units
(OTUs) using Mothur v.1.35.1 after generating a distance
matrix in BioEdit v.7.2.6.1. A 97% similarity cut-off was
used for genus-level clustering. For Scalindua 16S rRNA,
0.5% distance was chosen and for hzo (gene-translated
protein sequence) 1% distance was used®. Coverage of
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clone library was calculated as C=[1-mn/N]x 100,
where #; is the total number of organisms of each species
and N is the total number of organisms of all species. For
diversity calculation, Shannon (/”) and Simpson (D") di-
versity indices were used. Pielou’s index (J’) was used to
understand species evenness. For species richness, abun-
dance-based coverage estimator (Sacg) and evenness bias-
corrected (Schao1) Were used. For diversity estimation, sta-
tistical software Primer v.6.1.10 and Estimate S v.9.1.0
were used.

Quantification of anammox genes

For qPCR-based gene quantification, three anammox-
specific genes were targeted: 16S rRNA, hzsA and

zo_cluster. Primer pair Brod541F/Amx820R used for
16S rRNA gene is known to target all environmental
anammox clusters®’. However, previous studies reveal
that this primer set amplifies only genus Scalindua®. The
functional genes specifically targeted #zsA common to all
known anammox communities’ and non-Scalindua-
specific hzo_cluster2 gene®>. The gene target size varied
between 260 and 290 bp for qPCR estimation, while pri-
mers used for diversity studies targeted a 720 and
1000 bp fragment, making it not suitable for qPCR-based
gene quantification as it generates non-specific fluores-
cence. The specificity of plasmid clones prepared for
the standard curve was checked using BLAST search, and
clones with maximum similarity were only used
(MG687445 (100%), MG687463 (96%), and MG687465
(83%)). These plasmid standards were generated from the
ODZ surface sediments underlying 200 m water-column
depths of the Arabian Sea, off Goa site. Standard curves
were determined by analysing ten-fold serial dilutions of
linear plasmid containing an insert of choice, with linear
regression of Cr values plotted against an initial copy
number on a log scale from 107" to 10, Amplification
factor and PCR efficiency were calculated from the slope
using qPCR efficiency calculator available on-line
(ThermoFisher, USA). The qPCR was performed in trip-
licate in 20 pl final reaction volume containing 1-1.25 ng
of sediment-extracted DNA diluted to 0.2 ng/ul, 10 pl of
2X Sybr fast master mix (Kapa Biosystems, USA), 1X
ROX reference dye (low), 10 pmol each of forward and
reverse primers on a 7500 Fast-Real-Time PCR system
(Applied Biosystems, CA, USA). The PCR programme
was initiated with a denaturation step spanning 15 m at
95°C, followed by 40 cycles of 95°C for 15 sec, 60°C for
60 sec and 72°C for 30 sec. Fluorescence was detected at
PCR extension at 72°C. Melt curve analysis was per-
formed at the end of 40 cycles to check the specificity of
amplification. Gel electrophoresis confirmed that only the
right size fragment was amplified. The gene copy number
was calculated from the Ct value applied to the regres-
sion formula generated from the standard curve (log
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Figure 1.

Table 2.

CTD profile of K-600 station showing water column physico-chemical characteristics of the sampled site.

Sample characteristics of K-600 station

Sediment characteristics (%)

Sampling date Station  TOC TIC ™ OM

Near bottom water profile

TOC/TN DO (uM) Temperature (°C) Salinity (PSU) Depth (m)

15 September 2015 K-600  4.662 7.131 0.906 8.037

6.005 33.05 9.945 35.188 580

scale). Copy number calculations were made per
nanogram of DNA, and results were expressed per
gram weight of sediment.

GenBank accession number

Nucleotide accession numbers for anammox-specific
clone library obtained are as follows: Scalindual6S
rRNA library (MG586106-MG586157) and Scalindua
HZO library (MG687469-MG687487).

Results
Site characteristics

The CTD profile indicates that the near-bottom water
(584 m) DO was ~33 uM, which implies stronger hypox-
ia in the underlying sediments (Figure 1). The bottom-
water temperature was 9.95°C and salinity (35.19 PSU)
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coincided with the average value for the Arabian Sea.
The sediment samples had high OC (4.662%) and excep-
tionally high TN (0.906%). The TIC was also found to be
very high (7.13%), along with high OM (8.04%). The
observed TOC/TN ratio of 5.14 is common to off shore
sediment samples (Table 2).

Scalindua 16S rRNA gene diversity and phylogeny

The 16S rRNA primer set used (Brod541F/Brod1260R) is
highly specific to Scalindua, and hence all clones ob-
tained using this primer in the study shared maximum
similarity with known Scalindua sp. only (Figure 2).
These sequences were 95-99% identical to each other and
98-100% identical to the top hits in GenBank sequences.
Almost 90% of the sequences obtained shared similarities
with a wide range of marine sediment habitats. This
covers oceanic regions that include Chuckchi Sea
(Arctic Ocean), Antarctic Sea (Southern Ocean),
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Figure 2. 16S rRNA gene-based phylogenetic tree of Scalindua anammox community from surface sediments of the east-
ern Arabian Sea underlying 600 m deep water column. Primer pair Broad541F/Brod1260R was used for clone library con-
struction, which is known to target only Scalindu sp. Neighbor-joining tree was reconstructed taking 1000 bootstrap
replicates. Clones are in green colour, anammox reference sequence in blue colour and outgroups in red colour. The most
similar hits are in black colour. The evolutionary distances were computed using the maximum composite likelihood
method and are in the units of the number of base substitutions per site. This analysis involved 87 nucleotide sequences. All
ambiguous positions were removed for each sequence pair (pairwise deletion option). There was total of 2275 positions in
the final dataset. Evolutionary analyses were conducted in MEGA X. Bootstrap support is shown in the phylogenetic tree,

which corresponds to node diameter and branch width.

688

CURRENT SCIENCE, VOL. 120, NO. 4, 25 FEBRUARY 2021



RESEARCH ARTICLES

Table 3. Diversity analysis of phylogenetic and functional gene clone library

Target gene N Similarity (%) OTU Coverage Alpha diversity J' (evenness) H’ (Shannon) D’ (Simpson)  Sace Schaot
Scalindua 16S 39 99.5 26 3333 6.824 0.9479 3.088 0.031 7195 5932
rRNA 99 15 61.54 3.821 0.9089 2.461 0.085 19.86  16.62
97 02 94.87 0.273 0.2918 0.2023 0.90013 2 2
Anammox hzo 17 99 17 0 5.647 1 2.833 0 145 145
97 14 17.65 4.588 0.9692 2.558 0.0294 6392  43.05

Jiaozhou Bay of the Yellow Sea located in South China
and Mie, Ago Bay in Japan (Indian Ocean), West of Juan
de Fuca Ridge and Peruvian oxygen minimum zone
(OMZ) (Pacific Ocean) and Gulf of Mexico (Atlantic
Ocean). Around 10% of sequences shared similarity with
those retrieved from hypersaline groundwater, marshy
areas, turning basin, and water conservation areas. Our
result displays high diversity in the benthic Scalindua
community in the sampled site of the Arabian Sea (Table
3). After removal of short-length sequence (<500 bp),
only 39 out of 52 sequences were subjected to further
analysis. A total of 26 out of 39 Scalindua-specific 16S
rRNA OTUs were obtained at a 0.05% sequence dissimi-
larity distance cut-off; the corresponding A’ index was
3.09 and predicted OTUs were 60.

Phylotypic diversity and phylogeny of hzo gene
fragment

The HZOF1/HZORI1 primer pair-based clone library had
19 positive clones out of 27 total sequences. Their simi-
larity in the positive clones ranged from 94% to 99% with
the /zo sequences in GenBank. In 17 of these 19 positive
hzo clones, similarity ranged between 84% and 98%. Two
sequences were eliminated due to their shorter than
500bp length. These 17 clones formed 14 distinct OTUs
at 97% sequence similarity cut-off (Figure 3). At 99%
cut-off, all fell out as separate OTUs. As much as 65% of
the sequences clustered into clades bearing similarities
with /szo sequences retrieved from Soledad basin OMZ
sediments and South China Sea sediments. 4" was 2.83
with a higher estimated richness of ~145.

Anammox gene copy number estimation

Anammox abundance on an average was 10* copies per
gram dry weight of sediment irrespective of the genes
targeted. The PCR efficiency for various anammox-
specific genes used here ranged from 102% to 110%. The
necessary correction was done to get an amplification
factor of 2 before estimating copy number, which was
expressed per gram of sediment and per nanogram of
total DNA. The Scalindua 16S rRNA, anammox /hzsA
and non- Scalindua hzo_cluster2 copy numbers were
6.89 £0.14 x 10%,4.99 + 0.35 x 10" and 3.53 £ 0.33 x 10*
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copies per gram of sediment and 9.4, 6.8 and 4.8
copies/ng of DNA respectively.

Discussion

Majority of the studies related to anammox bacterial
abundance and diversity from the Indian Ocean are from
pelagic ODZ**** and decidedly less information is avail-
able from sediment ODZ*>*, which is limited to 16S
rRNA gene alone. The present multi-primer approach was
useful to make realistic estimates of anammox abundance
and ascertained the need for using multiple gene markers
for reliable quantification of functional and phylotypic
members of the anammox process’ . All the primers used
in the present study were able to amplify in single PCR
consisting of 3540 cycles, suggesting quite a high abun-
dance of anammox microbes off Kochi hypoxic zones. In
the following discussion, to avoid primer bias and for
habitat specificity, the studies emanating from marine
environment were carried out utilizing the same primer
set only considered.

The Arabian Sea hypoxic zone characteristics

The Arabian Sea is one of the most productive regions
of the world’s oceans and sediments underlying it are
reported to have high OM content®®. Sampling was
carried out during the southwest monsoon period when
productivity is the highest*. High productivity in surface
water and subsequent settling of OM lead to the con-
sumption of DO, and eventually results in the build-up of
hypoxia and subsequent alteration of microbial communi-
ties*”. The average percentage TOC and TN values
reported from deep-sea sediments of the Gulf of Mexico
were 0.9+ 0.3 and 0.12+0.03 respectively’' and the
maximum reported TOC is 14.5% and TN is 1.6% in
OMZ surface sediments*. Here the sediment TOC and
TN were 4.67% and 0.9% respectively, owing to high
productivity-induced hypoxia leading to rapid burial of
TOC and TN®. After oxygen, as nitrogen is the next pre-
ferred electron acceptor, facultative anaerobes relying on
processes like anammox and denitrification dominate in
the ODZ'. In pelagic ecosystem DO and salinity are the
major factors controlling the distribution of Scalindua™,
whereas in benthic ecosystem their abundance is affected
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Figure 3. Hydrazine oxidoreductase, hzo gene-based phylogenetic tree of anammox community from surface
sediments of the eastern Arabian Sea underlying 600 m deep water column. Primer pair HZOF1/HZOR1 was used
for clone library construction, which is known to target all known anammox groups. Neighbour-joining tree was re-
constructed, taking 1000 bootstrap replicates. Clones are represented in green colour, anammox reference sequence
in blue colour and outgroups in red colour. The most similar hits are in black colour. The evolutionary distances
were computed using the Poisson correction method and are in the units of the number of amino acid substitutions
per site. This analysis involved 36 amino acid sequences. All ambiguous positions were removed for each sequence
pair (pairwise deletion option). There was a total of 673 amino acid positions in the final dataset. Evolutionary
analyses were conducted in MEGA X. Bootstrap support is shown in the phylogenetic tree, which corresponds to

node diameter and branch width.

by sediment TOC and TN content*, particularly the
availability of nitrogenous substrate nitrite and ammo-
nia'?. Here the near-bottom DO was higher than amiable;
however, there is a possibility that the sediment anammox
community must have restricted itself to anoxic micro-
niches as seen in pelagic ODZ**.

Anammox gene phylogeny and diversity

Scalindua is reported to be a low diverse community
in the Arabian Sea pelagic ODZ". In this study, we
observed higher diversity and the obtained clones shared
~99% similarity with all seven marine Scalindua species
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previously reported'>***°. These are S. sorokinii, S. bro-
dae, S. arabica, S. wagneri, S. zhenghei and S. rubra. A
similar study carried out using the sediment samples from
Bohai Sea, had recovered a maximum of only 15 Scalin-
dua-specific OTUs, but 24 hzo-specific OTUs at 0.5%
and 1% cut-off®. In the present studies, we obtained 26
Scalindua-specific 16S rRNA OTUs and 17 hzo-specific
OTUs at the respective cut-off values. However, pre-
dicted abundance for /zo is higher in this study, suggest-
ing that the anammox community in the Arabian Sea
sediments might be much more diverse.

Shannon diversity index (H’) was 3.078 and 2.994 for
the two targeted genes respectively, while in Bohai Sea
sediments, the values ranged between 1.46 and 2.95; 2.18
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and 3.79 for 16S rRNA and /zo genes respectively. In
Bohai Sea sediment, another interesting observation was
that in samples where hzo diversity was high, the Scalin-
dua 16S rRNA diversity was low, i.e. 1.46/3.79 and when
Scalindua 16S rRNA diversity was high, there was not
much difference in the diversity of hzo gene (2.95/2.85)°.
Similarly, in this study, diversity index for the two genes
did not vary much, suggesting that the 4zo sequences re-
covered in this study most likely belongs to Scalindua-
like anammox community. This is reflected in the phylo-
genetic analysis as well, as hzo sequences clustered only
with Scalindua sp. Similar results were also reported from
the highly productive Peru margin ODZ sediments’.

This study highlights the need to use primer sets to
amplify both taxonomic and functional gene fragments.
In spite of the fact that abundance in terms of copy num-
bers was low, the use of Azo primers confirmed the pres-
ence of anammox community mostly comprising
Scalindua OTUs. Using Planctomycetes-specific forward
and universal bacterial reverse primers®, six Scalindua
OTUs were reported from surface sediments off Kochi®'.
Apparently, looking for specific functional gene/s
involved in the anammox process would prove useful in
future studies for detecting the community involved as
well as for confirming the occurrence of anammox simul-
taneously with other denitrification reactions.

Hydrazine gene markers are highly unique to the
anammox community, and many primers have been suc-
cessfully tested in diverse habitats targeting hydrazine
subunits, namely synthase (Azs) and oxidoreductase (/zo)
genes™2. Recent studies identify the occurrence of hy-
droxylamine oxidoreductase (kao) and hydroxylamine
dehydrogenase (hdh) as well as hydrazine hydrolase (4h)
genes in selected species, and primers have been devel-
oped using the sequence information®?. The Azo primer
set used for this analysis was able to amplify a ~1000 bp
gene fragment, thus making it useful for phylogenetic
analysis®®. Similar to16S rRNA gene, majority of the /zo
gene sequences also shared similarities with those
obtained from surface/subsurfaces sediments of the South
China Sea and Soledad Basin sediments.

Anammox gene abundance

From North Sea sediments, maximum gene abundance
reported for 4zsA ranged between 10° and 10°, and for the
16S rRNA gene a ten-fold increase was reported at shal-
low depth®. Phylogeny studies confirmed that all clones
were similar to Scalindua only. While another study from
the same location carried out in sandy and muddy shelf
sediments reported anammox copy number as low as 10°
for 16S rRNA, whereas 4zsA was below detection limit>*.
In the present study, all three genes targeted were present
in 10* copies/g dry wt of sediment, suggesting that mul-
tiple factors control anammox gene distribution within
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sediment ODZ. For /zo gene targeting non-Scalindua, no
data in particular from marine sediments are reported. An
available study from the eastern Indian Ocean ODZ
sediments which focused mainly on Scalindua-specific
16S rRNA genes detected unusually high abundance, i.e.
3.20 x 10* + 1.18 x 10° ng™ DNA?®, while in the present
study we retrieved only 9.6 copies ng” DNA. However in
the methodology, these authors®® have not mentioned
whether they used concentrated DNA or not.

For correlating gene abundance with bacterial abun-
dance, it is essential to understand the copy number varia-
tion between the genes. The 16S rRNA gene copy
number varies significantly from 1 to 15, an average be-
ing 3.6 copies per bacterial cell, making it a less suitable
proxy for bacterial abundance estimation®. It is sug-
gested that in anammox bacteria, 16S rRNA could be
present in a single copy’®. For hzsA genes, the whole-
genome study confirmed their occurrence in a single
copy™’, whereas hzsB and hzsC subunits occurred in
multiple copies®’. Hence hzsA gene proves to be a better
proxy for estimating anammox bacterial abundance.
Accordingly, we assume that the actual anammox cell
abundance in the studied site could be >4.99 + 0.35 x 10"
copies/g dry wt of sediment, based on /zsA gene quanti-
fication. Few selected AzsA clones screened (unpublished
data) showed that they must have been derived from an
yet to be characterized anammox community. In the case
of hzo also multiple copies are reported, but since there is
not much information on the studied primer set

zo_cluster2, we cannot predict anything regarding the

non-Scalindu cell abundance*'. It is possible that pre-
vious studies targeting the 16S rRNA and 4zo genes must
have overestimated the anammox bacterial abundance,
and we recommend obtaining data utilizing 4zsA gene.

Although a 2.4-fold higher value is reported’®, the ratio
of Scalindua 16S rRNA to hzsA was 1.38-fold higher
from the present study site. From this observation, it is
possible to highlight that only <60% of AzsA might be
from the Scalindua anammox community. The ratio of
hzo_cluster2 to hzsA was ~0.71-fold, suggesting that the
non-Scalindua contribution could be >30%. Unravelling
the functional capability of these versatile communities is
important and, accordingly, new primers must to be
designed and tested to get a clear picture of the extent of
diversity within the anammox community.

Conclusion

The present multi-gene, multi-primer-based study identi-
fies vast diversity within the Candidatus Scalindua com-
munity and also provides realistic estimates of anammox
abundance in the organic-rich sediments underlying the
Arabian Sea hypoxic zones. It further highlights the
applicability of functional genes and the advantages of
using taxa-specific primers in diversity studies. For
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understanding the factual diversity, similar profiling
using novel and unique gene markers, and subsequent
phylogenetic analysis is required to strengthen the data-
base. Molecular signatures, if used correctly, could refine
and contribute to many age-old concepts pertaining to

anammox occurrence and dominance

in the natural

ecosystem.
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