Bull. Cal. Math. Soc., 114, (2) 115–124 (2022)

REES MATRIX SEMIGROUP OVER A Γ-SEMIGROUP

SMISHA M.A.* AND P.G. ROMEO[†]

(Received 28 July 2021 and revision received 23 February 2022)

Abstract. In this paper, we introduce Rees matrix Γ -semigroup which is a generalization of Ree's matrix semigroups and discuss several of it's properties. Further we describe the amalgam of Rees matrix Γ -semigroups and its embeddability.

2010 Mathematics Subject classification: Primary 06F99; Secondary 06F05

Keywords and Phrases: Γ-semigroups,Semigroup Amalgam,simple,Rees matrix semigroups.

1. Preliminaries. A semigroup is a non-empty set together with an associative binary operation. Let S be a semigroup, I and A non-empty sets and P be a $I \times A$ matrix with entries $p_{i,\lambda}$ taken from S. Then $M(S; I, \Lambda; P)$ is the set $I \times S \times \Lambda$ together with the multiplication $(i, s, \lambda)(j, t, \mu) = (i, sp_{\lambda,j}t, \mu)$ is a semigroup called Rees matrix semigroup over a semigroup S. Γ -semigroups are one class of generalized semigroups introduced by M K Sen (Sen and Saha, 1986). Let M and Γ are two non-empty sets. Then M is a Γ -semigroup if the following axioms are satisfied : for all $m_1, m_2, m_3 \in M$ and $\alpha, \beta \in \Gamma$

- $m_1 \alpha m_2 \in M$.
- $(m_1 \alpha m_2)\beta m_3 = m_1 \alpha (m_2 \beta m_3)$.

A subset K of the set M is called a Γ -subsemigroup if $K\Gamma K \subset K$. An element m in a Γ -semigroup M is called α -idempotent if $m\alpha m = m$ for some $\alpha \in \Gamma$, if every element in the Γ -semigroup M is an α -idempotent for some $\alpha \in \Gamma$ then M is called an idempotent Γ -semigroup. For a Γ -semigroup M, a subset $A \subset M$ is called left(right) Γ -ideal if $M\Gamma A \subset A$ ($A\Gamma M \subset A$). The smallest left Γ -ideal containing $m \in M$ is called principal left ideal generated by m and is denoted by $(m)_l$. Similarly the smallest right Γ -ideal containing $m \in M$ is called principal right ideal generated by m and is denoted by $(m)_r$. The Green's relations in Γ -semigroups are as follows:

• $m \mathscr{L} n$ if and only if $(m)_l = (n)_l$

- $m \mathscr{R} n$ if and only if $(m)_r = (n)_r$
- $m \mathcal{J}n$ if and only if (m) = (n)
- $m \mathscr{H} n$ if and only if $m \mathscr{L} n$ and $m \mathscr{R} n$
- $m\mathcal{D}n$ if and only if there exist p such that $m\mathcal{L}p$ and $p\mathcal{R}n$

A Γ -semigroup M is said to be left(right) simple if it has no proper left(right) ideals and is said to be simple if it has no proper ideals. Let M be a Γ -semigroup, an element $m \in M$ is said to be Γ -regular if $m = m\Gamma M\Gamma m$ and if every element m of M is Γ -regular then M is called Γ -regular semigroup.

2. Rees Matrix Semigroup over a Γ -semigroup. Let G be a group, I, Λ be indexing sets and P be a $\Lambda \times I$ sandwich matrix over $G \cup \{0\}$ then $\mathscr{M} = \mathscr{M}^0(G; I; \Lambda; P) = \{(i, a, \lambda) \in I \times G \times \Lambda\} \cup \{0\}$ with binary composition $(i, a, \lambda).(j, b, \mu) = (i, ap_{\lambda j}b, \mu)$ is called the Rees matrix semigroup. Analogous to this we proceed to discuss a Rees matrix semigroup over a Γ -semigroup M.

DEFINITION 2.1 Let M be a Γ -semigroup, let I, Λ be non-empty sets and $P = [p_{\lambda,i}]$ be a $\Lambda \times I$ sandwich matrix with entries from Γ . Then $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$, the set of all $I \times \Lambda$ matrices over M, is a Γ -semigroup with operation defined by

$$A_1 \cdot A_2 = A_1 P A_2$$

where the operation on the right is the usual matrix multiplication. Then $(\mathscr{R}_{\Gamma}, \cdot)$ is called Rees matrix semigroup over a Γ -semigroup M and will call a Rees matrix Γ -semigroup.

As in the case of semigroup, the sandwich matrix P is said to regular if each column and each row contains atleast one nonzero entry from Γ .

EXAMPLE 2.2 Let $M = \{0, i, -i\}$ and $\Gamma = \{0, i, -i\}$. Then M is a Γ -semigroup and $\mathscr{R}_{\Gamma} = \mathcal{M}(M, I; \Lambda, P)$, be the set of all $I \times \Lambda$ matrices over M and P be a $\Lambda \times I$ sandwich matrix over the set Γ with entries from Γ . Then for all $M_1, M_2 \in \mathscr{R}_{\Gamma}$ with $M_1 \cdot M_2 = M_1 P M_2$, where the multiplication on the right is the usual multiplication of matrices. $(\mathscr{R}_{\Gamma}, \cdot)$ is a Rees matrix Γ -semigroup.

EXAMPLE 2.3 Let S be the set of all non-positive integers and Γ the set of all non-positive even numbers, such that S is a Γ -semigroup with usual multiplication of numbers. Consider P as an $\Lambda \times I$ matrix over Γ . Then the Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{S}(S, I; \Lambda, P)$ consists of all matrices of the form $I \times S \times \Lambda$ with multiplication $s_1 \cdot s_2 = s_1 P s_2$ for each $s_1, s_2 \in \mathscr{R}_{\Gamma}$.

In the following we discuss the regular elements and idempotents of a Rees matrix Γ -semigroup.

DEFINITION 2.4 Let M be a Γ -semigroup. An element m of M is called α -idempotent if $m\alpha m = m$ for some $\alpha \in \Gamma$. If every element in the Γ -semigroup M is an α idempotent for some $\alpha \in \Gamma$ then M is called an idempotent Γ -semigroup.

DEFINITION 2.5 Let $\mathscr{R}_{\Gamma} = \mathscr{M}(M, I; \Lambda, P)$ be a Rees matrix Γ -semigroup over a Γ semigroup M with indexing sets I, Λ . An element $(i, m, \lambda) \in \mathscr{R}_{\Gamma}$, where $i \in I, \lambda \in \Lambda$ and $m \in M$, is called an idempotent if $(i, m, \lambda) \cdot (i, m, \lambda) = (i, m, \lambda)$.

THEOREM 2.6 Let M be a Γ -semigroup and $\mathscr{R}_{\Gamma} = \mathscr{M}(M, I; \Lambda, P)$ be Rees matrix Γ -semigroup. An element $(i, m, \lambda) \in \mathscr{R}_{\Gamma}$ is an idempotent if and only if m is a $p_{\lambda,i}$ -idempotent in M.

 $\mathit{Proof:}\,$ Assume an element $(i,m,\lambda)\in \mathscr{R}_{\Gamma}$ is an idempotent . Then

$$(i, m, \lambda) \cdot (i, m, \lambda) = (i, m, \lambda)$$

 $(i, mp_{\lambda,i}m, \lambda) = (i, m, \lambda)$

that is,

$$mp_{\lambda,i}m = m.$$

Hence m is a $p_{\lambda,i}$ -idempotent in M.

Conversely suppose that m is a $p_{\lambda,i}$ -idempotent in M. Then

$$\begin{split} mp_{\lambda,i}m &= m\\ (i,mp_{\lambda,i}m,\lambda) &= (i,m,\lambda)\\ (i,m,\lambda) \cdot (i,m,\lambda) &= (i,m,\lambda) \end{split}$$

Therefore, (i, m, λ) is an idempotent in \mathscr{R}_{Γ} .

EXAMPLE 2.7 Let $K = \{0, i, -i\}$, consider Γ as K itself such that K is a Γ -semigroup. Let $I = \{1\}$, $\Lambda = \{1, 2\}$ be indexing sets and $P = \begin{bmatrix} 0\\ -i \end{bmatrix}$ be a 2×1 matrix over Γ . Then $\mathscr{R}_{\Gamma} = \{(1, i, 1), (1, i, 2), (1, 0, 1), (1, 0, 2), (1, -i, 1), (1, -i, 2)\}$. Since i(-i)i = iand (-i)i(-i) = (-i), i is a -i-idempotent and -i is an i-idempotent of K and $(1, i, 2)(1, i, 2) = (1, ip_{2,1}i, 2) = (1, i(-i)i, 2) = (1, i, 2)$, hence (1, i, 2) is an idempotent in \mathscr{R}_{Γ} . We characterize regular elements of Rees matrix Γ -semigroup as follows:

DEFINITION 2.8 Let M be a Γ -semigroup. An element $m \in M$ is called (α, β) -regular in M for $\alpha, \beta \in \Gamma$ if there is an element $x \in M$ such that $m = m\alpha x\beta m$.

THEOREM 2.9 Let $\mathscr{R}_{\Gamma} = \mathscr{M}(K, I; \Lambda, P)$ be a Rees matrix Γ -semigroup over K where I, Λ indexing sets and P be a $\Lambda \times I$ matrix over Γ . An element $(i, x, \lambda) \in \mathscr{R}_{\Gamma}$ is regular if and only if x is a $(p_{\lambda,j}, p_{\mu,i})$ -regular element of K.

Consider an element $(i, x, \lambda) \in \mathscr{R}_{\Gamma}$. Then (i, x, λ) is a regular element of \mathscr{R}_{Γ} if there exist an element (j, y, μ) such that

$$(i, x, \lambda)(j, y, \mu)(i, x, \lambda) = (i, x, \lambda)$$
$$(i, xp_{\lambda,j}y, \mu)(i, x, \lambda) = (i, x, \lambda)$$
$$(i, xp_{\lambda,j}yp_{\mu,i}x, \lambda) = (i, x, \lambda)$$
$$xp_{\lambda,j}yp_{\mu,i}x = x$$

hence x is a $(p_{\lambda,j}, p_{\mu,i})$ -regular element of K.

Conversely suppose that x is a $(p_{\lambda,j}, p_{\mu,i})$ -regular element of K. Then $xp_{\lambda,j}yp_{\mu,i}x = x$ and $(i, xp_{\lambda,j}yp_{\mu,i}x, \lambda) = (i, x, \lambda)$.

Also $(i, x, \lambda)(j, y, \mu)(i, x, \lambda) = (i, x, \lambda)$. Hence (i, x, λ) is a regular element of \mathscr{R}_{Γ} . EXAMPLE 2.10 Consider the Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(K, I; \Lambda, P)$ where $K = \{0, i, -i\}, \Gamma$ is taken as K itself such that K is a Γ -semigroup, $I = \{1\}, \Lambda = \{1, 2\}$ be indexing sets with sandwich matrix $P = \begin{bmatrix} i \\ -i \end{bmatrix}$. In K, i(i)(-i)(-i)i = i and hence i is an (i, -i)-regular element of K. Now for (1, i, 1), there exist (1, -i, 2) such that (1, i, 1)(1, -i, 2)(1, i, 1) = (1, i, 1) and hence (1, i, 1) is an (i, -i)-regular element in \mathscr{R}_{Γ} .

3. Hereditary properties on Rees matrix Γ -semigroup. In this section we discuss some results on properties of Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ which inherited from the Γ -semigroup M.

THEOREM 3.1 A Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ over a Γ semigroup M with |I| = 1 is right simple if and only if M is right simple Γ semigroup.

Proof: Let \mathscr{R}_{Γ} be an arbitrary Rees matrix Γ -semigroup over a Γ semigroup M and assume the Γ semigroup M is right simple.

Let $(i, m, \lambda), (i, n, \mu)$ be arbitrary elements in \mathscr{R}_{Γ} . Then,

$$m\Gamma M = M \Rightarrow mp_{\lambda,i}M = M$$

implies $mp_{\lambda,i}m' = n$ for some $m' \in M$.

118

Hence,

$$(i,m,\lambda)(i,m',\mu) = (i,mp_{\lambda,i}n',\mu) = (i,n,\mu).$$

Then, $(i, m, \lambda)\mathcal{M} = \mathcal{M}$ for all $(i, m, \lambda) \in \mathcal{M}$. Thus \mathcal{M} is right simple.

Conversely, suppose that \mathcal{M} is right simple.

Let $m, n \in M$ be arbitrary elements and $p_{\lambda,i} = \alpha \in \Gamma$.

Then for any $\lambda \in \Lambda$, we have $(i, m, \lambda)\mathcal{M} = \mathcal{M}$ and so,

$$(i, m, \lambda)(i, m', \eta) = (i, n, \eta)$$

for some $(i, m', \eta) \in \mathcal{M}$. Hence

$$mp_{\lambda,i}m' = n$$

Thus $m\Gamma M = M$ for all $m \in M$ and the Γ -semigroup M is right simple. THEOREM 3.2 A Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ over a Γ semigroup M with |I| = 1 is simple if and only of M is a simple Γ semigroup.

Proof: Let \mathscr{R}_{Γ} be an arbitrary Rees matrix Γ -semigroup over a Γ semigroup M.

Assume that the Γ semigroup M is simple. Let $(i, a, \lambda), (i, b, \mu) \in \mathcal{M}(M; I; \Lambda; P)$ be arbitrary elements. Now for arbitrary $\rho \in \Gamma$,

$$Mp_{\rho,i}ap_{\lambda,i}M = M,$$

and so

$$a'p_{\rho,i}ap_{\lambda,i}b'=b$$

for some $a', b' \in M$. Hence

$$(i, a', \rho)(i, a, \lambda)(i, b', \mu) = (i, a' p_{\rho,i} a p_{\lambda,i} b', \mu) = (i, b, \mu).$$

Thus

$$\mathcal{M}(i, a, \lambda)\mathcal{M} = \mathcal{M}$$

for every $(i, a, \lambda) \in \mathcal{M}$. Then $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ is simple.

Conversely, assume that $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ is simple. Let $m, n \in M$ and $\alpha, \beta \in \Lambda$ be arbitrary elements. Then

$$\mathscr{M}(i,m,\alpha)\mathscr{M}=\mathscr{M},$$

and so there are elements $(i, m', \rho), (i, n', \mu) \in \mathcal{M}(M; I; \Lambda; P)$ such that

$$(i, m' p_{\rho,i} m p_{\lambda,i} n', \mu) = (i, m', \rho)(i, m, \lambda)(i, n', \mu) = (i, n, \mu).$$

Hence

$$m' p_{\rho,i} m p_{\lambda,i} n' = n.$$

Thus $M\Gamma m\Gamma M = M$ for every $m \in M$. Then the Γ semigroup M is simple.

THEOREM 3.3 A Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(M, I; \Lambda, P)$ over a Γ semigroup M with $|\Lambda| = 1$ is left simple if and only of M is left simple Γ semigroup.

Proof: The proof follows from the same arguments that we discussed in the proof of theorem 3.1.

THEOREM 3.4 Let $\mathscr{R}_{\Gamma} = \mathscr{M}(M, I; \Lambda, P)$ be Rees matrix Γ -semigroup with |I| = 1 over a Γ -semigroup M. Then \mathscr{R}_{Γ} is left cancellative with $|\Gamma| = 1$ if and only if M is a left cancellative Γ -semigroup.

Proof: First assume that the Rees matrix Γ -semigroup $\mathscr{M}(M, I; \Lambda, P)$ over a Γ semigroup M is left cancellative. Let $m_1, m_2, m_3 \in M$ and $\alpha \in \Gamma$ be arbitrary element
with $m_1 \alpha m_2 = m_1 \alpha m_3$. Then for arbitrary $\lambda \in \Lambda$,

$$(i, m_1, \gamma)(i, m_2, \lambda) = (i, m_1, \gamma)(i, m_3, \lambda).$$

Since the Rees matrix Γ semigroup \mathcal{M} is cancellative , we get

$$(i, m_2, \lambda) = (i, m_3, \lambda)$$

and so $m_2 = m_3$ and hence M is a cancellative Γ -semigroup.

Conversely, assume that, for every $m_1, m_2, m_3 \in M$ and $\alpha \in \Gamma$, the assumption $m_1 \alpha m_2 = m_1 \alpha m_3$ implies $m_2 = m_3$. Let $(i, m_1, \gamma), (i, m_2, \lambda), (i, m_3, \tau) \in \mathcal{M}(M; I; \Lambda; P)$ be arbitrary elements with

$$(i, m_1, \gamma)(i, m_2, \lambda) = (i, m_1, \gamma)(i, m_3, \tau)$$

then

$$(i, m_1 p_{\gamma,i} m_2, \lambda) = (i, m_1 p_{\gamma,i} m_3, \tau),$$

that is, $m_1 p_{\gamma,i} m_2 = m_1 p_{\gamma,i} m_3$ and $\lambda = \tau$. Since $|\Gamma| = 1$ and M is left cancellative, we get $m_2 = m_3$, and so $(i, m_2, \lambda) = (i, m_3, \tau)$. Hence the Rees matrix Γ -semigroup $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ is left cancellative.

Analogously we have the following theorem:

THEOREM 3.5 Let $\mathscr{R}_{\Gamma} = \mathscr{M}(M; I; \Lambda; P)$ be Rees matrix Γ -semigroup with $|\Lambda| = 1$ over a Γ -semigroup M. The Rees matrix Γ -semigroup \mathscr{R}_{Γ} is right cancellative with $|\Gamma| = 1$ if and only if M is a right cancellative Γ -semigroup.

4. Embedding on Rees matrix Γ -semigroup and Amalgam. In this section we discuss conditions for embedding of a Rees matrix Γ -semigroup to another Rees matrix Γ -semigroup. Also the amalgam of Rees matrix Γ -semigroup is defined and discussing its embeddability.

THEOREM 4.1 Let S be a Γ -semigroup and T a Γ' -semigroup. $\Phi = (\psi, \phi)$ an embedding of (S, Γ) into (T, Γ') . For non-empty sets I and Λ , the Rees matrix Γ -semigroup $\mathscr{M}(S; I; \Lambda; P)$ is embeddable into the Rees matrix Γ' -semigroup $\mathscr{M}(T; I; \Lambda; P')$ where $P' = (\phi(p_{\lambda,i}))$ for every $i \in I$ and $\lambda \in \Lambda$.

Proof: We claim the mapping Υ : $(i, s\gamma s', \lambda) \mapsto (i, \Phi(s\gamma s'), \lambda)$ is an embedding of the Rees matrix Γ -semigroup $\mathscr{M}(S; I; \Lambda; P)$ into the Rees matrix Γ' -semigroup $\mathscr{M}(T; I; \Lambda; P')$ where $P' = (\phi(p_{i\lambda}))$ for every $s \in S, i \in I, \gamma \in \Gamma$ and $\lambda \in \Lambda$.

First, the mapping Υ is injective, for

$$\Upsilon((i, s, \lambda)) = \Upsilon((j, s', \mu))$$

where $s, s' \in S, i, j \in I$ and $\lambda, \mu \in \Lambda$. Then

$$(i, \psi(s), \lambda) = (j, \psi(s'), \mu) \Longrightarrow \psi(s) = \psi(s')$$

and i = j, $\lambda = \mu$. Since ψ is injective, we get

$$(i, s, \lambda) = (j, s', \mu).$$

Further the mapping Υ is Γ -homomorphism for $(i, s, \lambda), (j, s', \mu) \in \mathcal{M}(S; I; \Lambda; P)$ be arbitrary elements. Then

$$\begin{split} \Upsilon((i,s,\lambda)(j,s',\mu)) &= \Upsilon((i,sp_{\lambda,j}s',\mu)) \\ &= (i,\Phi(sp_{\lambda,j}s'),\mu) \\ &= (i,\psi(s)\phi(p_{\lambda,j})\psi(s'),\mu) \\ &= (i,\psi(s),\lambda)(j,\psi(s'),\mu) \\ &= \Upsilon((i,s,\lambda))\Upsilon((j,s',\mu)) \end{split}$$

that is, Υ is a Γ -homomorphism. Consequently the mapping Υ is an embedding.

In a more general way we have the following

THEOREM 4.2 Let S be a Γ -semigroup and T be a Γ' -semigroup. S_1 be Rees matrix Γ -semigroup $\mathscr{M}(S, I; \Lambda, P)$ with sandwich matrix P whose entries are from Γ and S_2 be Rees matrix Γ -semigroup $\mathscr{M}(T, J; \Pi, Q)$ with sandwich matrix Q whose entries are from Γ' . Then S_1 and S_2 are isomorphic if and only if there exist a (Γ, Γ') -isomorphism $\Delta = (\delta_1, \delta_2)$ where $\delta_1 : S \to T, \ \delta_2 : \Gamma \to \Gamma'$, bijections $\epsilon : I \to J, \ \zeta : \Lambda \to \Pi$ and $Q = (\delta_2(p_{\lambda,i}))$ for every $i \in I$ and $\lambda \in \Lambda$.

DEFINITION 4.3 An amalgam of Rees matrix Γ -semigroups consists of non-empty sets S_1, S_2, U and Γ such that S_1, S_2, U are Γ -semigroups over the same Γ and $\phi_i : U \to S_i$ for $i = \{1, 2\}$ be Γ -monomorphisms. For non-empty indexing sets I, J and $J \times I$ sandwich matrices P, Q, R over the set Γ the Rees matrix Γ -semigroup $M = \mathscr{M}(U, I; J, P),$ $M_1 = \mathscr{M}(S_1, I; J, Q), M_2 = \mathscr{M}(S_2, I; J, R)$ constitutes a Rees matrix Γ -semigroup amalgam $[M, M_1, M_2, \psi_1, \psi_2]$ with Γ -monomorphisms $\psi_i : M \to M_i$ for $i = \{1, 2\}$.

The Rees matrix Γ -semigroup amalgam $[M, M_1, M_2, \psi_1, \psi_2]$ is said to be embeddable in a Rees matrix Γ -semigroup $M_3 = \mathscr{M}(T, I; J, W)$ with sandwich matrix W over Γ if there exist mappings $\eta : M \to M_3$ and $\eta_i : M_i \to M_3$ such that (i) $\psi_1 \eta_1 = \psi_2 \eta_2 = \eta$. Then the amalgam is said to be weakly embeddable. In addition, if the amalgam satisfies $\eta_1(M_1) \cup \eta_2(M_2) = \eta(M)$ then the amalgam is called strongly embeddable.

THEOREM 4.4 Let $\mathscr{U} = [U, S_1, S_2, \phi_1, \phi_2]$ be Γ -semigroup amalgam where U, S_1, S_2 are Γ -semigroups over the same Γ , ϕ_1, ϕ_2 be Γ -monomorphisms from U to S_1, S_2 respectively and \mathscr{U} be embeddable in a Γ -semigroup T. Then the Rees matrix Γ semigroup amalgam $[M, M_1, M_2, \psi_1, \psi_2]$ is embeddable in $\mathscr{M}(T, I; J, P)$

Proof: Consider the Γ -semigroup amalgam $\mathscr{U} = [U, S_1, S_2, \phi_1, \phi_2]$ and let $\phi_1(u) = s_1$, $\phi_2(u) = s_2$ where $u \in U$, $s_1 \in S_1$ and $s_2 \in S_2$. Since \mathscr{U} is embeddable in a Γ -semigroup T, there exist mappings $\theta_1 : S_1 \to T$ and $\theta_2 : S_2 \to T$ such that $\phi_1 \theta_1 = \phi_2 \theta_2$ and $\theta_1(s_1) = \theta_2(s_2)$ hence there exists $u \in U$ such that $s_1 = \phi_1(u)$ and $s_2 = \phi_{2(u)}$ where $s_1 \in S_1$ and $s_2 \in S_2$.

Consider the Rees matrix Γ -semigroups M, M_1 and M_2 with $\psi_1 : M \to M_1$ and $\psi_2 : M \to M_2$, let $(i, u, j) \in M = \mathscr{M}(U, I; J, P)$. Define $\psi_1 : M \to M_1$ by

$$\psi_1(i, u, j) = (i, \phi_1(u), j)$$

Since ϕ_1 is a Γ -monomorphism, ψ_1 is also a Γ -monomorphism.

Next we construct a Rees matrix Γ -semigroup over T where the amalgam $\mathscr{U} = [U, S_1, S_2, \phi_1, \phi_2]$ is embeddable. Let it be $M_T = \mathscr{M}(T, I; J, P)$ where the sandwich

122

matrix P is over Γ . Since the amalgam \mathscr{U} is embeddable in T, M_T has the property that $(i, \phi_1\theta_1(u), j) = (i, \phi_2\theta_2, j)$ and $(i_1, \theta_1(s_1), j_1) = (i_2, \theta_2(s_2), j_2)$ implies $i_1 = i_2$, $j_1 = j_2$ and $\exists u \in U$ such that $s_1 = \phi_1(u)$ and $s_2 = \phi_{2(u)}$ where $s_1 \in S_1$ and $s_2 \in S_2$.

Now let $(i, u, j) \in M_T = \mathscr{M}(T, I; J, Z)$. Define the mapping $\eta_1 : M_1 \to M_T$ by $\eta_1(i, s_1, j) = (i, \theta_1(s_1), j)$ and $\eta_2 : M_2 \to M_T$ by $\eta_2(i, s_2, j) = (i, \theta_2(s_2), j)$. To show that the mappings η_1 and η_2 are Γ -monomorphisms, consider two arbitrary elements (i, s_1, j) and $(i, s'_1, j) \in M_1$ and

$$\eta_1((i, s_1, j)) = \eta_2((i, s_1', j))$$
$$(i, \theta_1(s_1), j) = (i, \theta_2(s_1'), j)$$
$$\theta_1(s_1) = \theta_2(s_1')$$

since θ_1 is one-one, we get $s_1 = s'_1$. Thus $(i, s_1, j) = (i, s'_1, j)$. Also

$$\begin{aligned} \eta_1((i, s_1, j)(i, s_1', j)) &= \eta_1((i, s_1 q_{ji} s_1', j)) \\ &= (i, \theta_1(s_1 q_{ji} s_1'), j) \\ &= (i, \theta_1(s_1, j)(i, s_1'), j) \\ &= \eta_1((i, s_1, j) \eta_1(i, s_1', j). \end{aligned}$$

Thus the mapping η_1 is a Γ -monomorphism and similarly η_2 . Hence η_1, η_2 are embeddings. Now to verify the conditions of embeddability, consider arbitrary element (i, u, j) and

$$\begin{aligned} \eta_1 \psi_1((i, u, j)) &= \eta_1(\psi_1(i, u, j)) = \eta_1((i, \phi_1(u), j)) \\ &= \eta_1((i, s_1, j)) = (i, \theta_1(s_1), j) \\ &= (i, \theta_1 \phi_1(u), j) = (i, \theta_2 \phi_2(u), j) \\ &= (i, \theta_2(s_2), j) = \eta_2((i, s_2, j)) \\ &= \eta_2((i, \phi_2(u), j)) = \eta_2(\psi_2(i, u, j)) \\ &= \eta_2 \psi_2((i, u, j)) \end{aligned}$$

hence $\eta_1 \psi_1 = \eta_2 \psi_2$.

Also assume $\eta_1((i, s_1, j)) = \eta_2((i, s_2, j))$, then $(i, \theta_1(s_1), j) = (i, \theta_2(s_2), j)$ implies $\theta_1(s_1) = \theta_2(s_2)$. Since \mathscr{U} is embeddable there exist $u \in U$ such that $\phi_1(u) = s_1$

and $\phi_2(u) = s_2$. Therefore, we get, there exist an element (i, u, j) such that $\psi_1((i, u, j)) = (i, s_1, j)$ and $\psi_2((i, u, j)) = (i, s_2, j)$. Thus the amalgam satisfies both the conditions and as a result it is embeddable in M_T .

References

Chinram R. and **Tinpun K.** (2009) : Isomorphism Theorems for Γ -Semigroups and ordered Γ -Semigroups, *Thai J.Math.*, **7**(2), 231–241, www.math.science.cmu.ac.th/thaijournal.

Clifford, Alfred Hoblitzelle and Gordon Bamford Preston. (1961) : The algebraic theory of semigroups. Vol. 7. American Mathematical Soc.

Howie and John M. (1976) : An introduction to semigroup theory, Academic Press INC (London) Ltd.

Howie and John M. (1995) : Fundamentals of semigroup theory, The Clarendon Press, Oxford University Press, NewYork .

Sen M.K. (1984) : On Γ-semigroups. In Algebra and its applications (New Delhi, (1981), 301–308., *Lecture Notes in Pure and Appl. Math.*, volume **91**. Dekker, New York.

Sen M.K. and Saha N.K. (1986) : On Γ-semigroup I, Bull. Calcutta Math. Soc., 78, 180–186.

Seth A. (1992) : Γ-Group congruences on regular Γ-Semigroups, Int. J. Math. & Math. Sci., 15, 103–106.

*ASSISTANT PROFESSOR DEPARTMENT OF MATHEMATICS ST. MIHAEL'S COLLEGE CHERTHALA, KERALA INDIA

 $E\text{-}\mathrm{MAIL}: smishaashok@gmail.com$

[†]PROFESSOR DEPARTMENT OF MATHEMATICS COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI, KERALA KOLKATA, W.B., INDIA *E*-MAIL : romeopg@cusat.ac.in

124