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On the embedding of Γ-semigroup Amalgam
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Abstract
Γ semigroup is introduced as a generalization of semigroups by M. K Sen and Saha. In this paper we describe
amalgam of two Γ- semigroups and discuss the embeddability of this amalgam. Further we obtained a necessary
condition for the embeddability of completely α-regular Γ-semigroup amalgam.
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1. Preliminaries
In the following first we briefly recall amalgams of groups,
semigroups and free product of semigroup amalgams, then
we recall Γ- semigroups, the amalgam of Γ- semigroups and
their properties as described by M K Sen and Saha [9].

A group amalgam consists of three groups G,K and H,
called core of the amalgam and embeddings m : H→ G and
n : H→ K. The amalgam is said to be embeddable if we can
find another group T which contains G∪K containing H. If
G∪K = H in T , then amalgam is called strongly embeddable.
Schreierr (1927) in [3] and [10] has shown that group amal-
gam is always embeddable. But all semigroup amalgams are
not always embeddable.

Definition 1.1. (cf.[6] ) A semigroup amalgam K = [{Si; i ∈
I} : U : {θi; i ∈ I}] consists of a semigroup U, the core of the
amalgam, a family of mutually disjoint semigroups {Si : i ∈ I}
and a family of monomorphisms θi : U → Si i ∈ I.

We say that the amalgam K is embedded in another
semigroup T if there exists monomorphism µ : U → T and

for each i ∈ I a monomorphism µi : Si→ T with

1. θiµi = µ for each i ∈ I.

2. Siµi∩S jµ j =Uµ for all i, j ∈ I such that i 6= j.

The amalgam is called weakly embeddable if it satisfies con-
dition (1) only and is strongly embeddable if both conditions
are satisfied. We say that the embedding of the amalgam is
possible whenever such a semigroup T exists.

A free product is an operation that takes two algebraic
objects and construct a new object in the same category. For a
family of semigroups {Si : i ∈ I} , the collection of all finite
strings of the form (a1,a2, · · · ,an) for ai ∈ {∪Si; i ∈ I } is
a semigroup with operation juxtaposition and is known as
free product of semigroups denoted by Π∗Si. The free product
Π∗U Si of the amalgam A = [U ;Si,φi] is defined as the quotient
semigroup of the ordinary free product Π∗Si in which for each
i and j in I the image φi(u) of the image u of U in Si is
identified its image φ j(u) in S j. Howie [6] showed that there
always exist a mapping µi from each Si of the amalgam to the
amalgamated free product with the following properties:

1. each µi is one-one .

2. µi(Si)∩µ j(S j)⊆ µ(U) for all i, j in I such that i 6= j.

If the above two conditions hold, then we say that the amalgam
A is naturally embedded in its free product and based on
this [6] [Theorem 8.2.4] proved that the semigroup amalgam
is embeddable in a semigroup if and only if it is naturally
embedded in its free product.
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Definition 1.2. (cf.[9]) Let S,Γ be two non-empty sets. Then
S is called a Γ-semigroup if there exist a mapping from S×
Γ×S to S which maps (a,γ,b)→ aγb satisfying the condition
(aγ)bµc = aγ(bµc) for all a,b,c ∈ S and γ,µ ∈ Γ.

Let S be a Γ-semigroup, A and B are two subsets of S
, then the set {aγb : a ∈ A,b ∈ Bγ ∈ Γ} is denoted by AΓB.
A nonempty subset A ⊂ S of a Γ-semigroup is called a Γ-
subsemigroup of S if AΓA⊂ A. For S,T be two Γ-semigroups,
a mapping f : S→ T such that and f (aγb) = f (a)γ f (b) for
each a,b ∈ S and γ ∈ Γ is called a Γ-semigroup homomor-
phism.

Next we generalize amalgams of semigroups to amalgams
of Γ-semigroups in terms of Γ-mappings.

Definition 1.3. Let U1,S1,S2 be mutually disjoint non-empty
sets and Γ0,Γ1,Γ2 such that U is a Γ0 -semigroup called core
of the amalgam, S1 is a Γ1 -semigroup, S2 is Γ2 -semigroup.
Then the collection A = [(U,Γ0),(S1,Γ1),(S2,Γ2), f1, f2] con-
stitutes a Γ-semigroup amalgam where fi = ( f

′
i , f

′′
i ) are Γ-

monomorphisms such that f
′
i : U → Si and f

′′
i : Γ0→ Γi for

i = {1,2}.

A Γ-semigroup amalgam [(U,Γ0),(S1,Γ1),(S2,Γ2), f1, f2]
is said to be embeddable in another Γ-semigroup (T,ΓT )
if there exist mappings (Γ -monomorphisms) g = (g′,g′′) :
(U,Γ0)→ (T,ΓT ) and gi = (g

′
i,g
′′
i ) : (Si,Γi)→ (T,ΓT ) where

gi : Si → T and g
′′
i : Γi → ΓT for i = 1,2 and g′ : U → T ,

g′′ : Γ0→ ΓT such that the following holds true:

[1] : the diagram

(U,Γ0) (S1,Γ1)

(S2,Γ2) (T,ΓT )

f1

f2
f

g1

f2

commutes and

[2] : g1((S1,Γ1))∩g2((S2,Γ2)) = g((U,Γ0))

The second condition can be restated as:

• whenever g1(s1γ1s
′
1) = g2(s2γ2s

′
2) (for s1,s

′
1 ∈ S1 ,

s2,s
′
2 ∈ S2 , γ1 ∈ Γ1 and γ2 ∈ Γ2) there exists u ∈ U

and γ0 ∈ Γ0 such that f
′
i (u) = si and f

′′
i (γ0) = γi for

i = 1,2.

If the amalgam satisfies condition [1] then it is called
weakly Γ-embeddable and if the amalgam satisfies both con-
ditions, then it is called strongly Γ-embeddable.

2. Free product of Γ -semigroups
Free product of an indexed family of pairwise disjoint semi-
groups was introduced by J M Howie [6] and the notion of
free Γ-semigroup was introduced by M K Sen [9]. In the fol-
lowing we define free product of a family of mutually disjoint
Γ-semigroups {Si : i ∈ I} and a family {Γi : i ∈ T} which are
also mutually disjoint.

Definition 2.1. Let {Γi : i ∈ T} be a family of disjoint non-
empty sets, {Si : i ∈ I} be a family of mutually disjoint Γ-
semigroups and x ∈ ∪{Si : i ∈ I}. Then there is a unique l
in I such that x ∈ Sl and l is called pointer of x, denoted by
l = ζ (x). Similarly for an element γ ∈ ∪{Γi : i ∈ I}, there is
a unique m in I such that γ ∈ Γm and m is called pointer of γ .

Consider ∆ as the collection of all elements of the form
(x1,γ1,x2,γ2, · · · ,γm−1,xm) where m ≥ 1 is an integer, xn ∈
∪{Si : i ∈ I} for n = 1,2,3, · · · ,m , γk ∈ ∪{Γi : i ∈ I} for
k = 1,2,3, · · · ,m− 1 and ζ (xn) 6= ζ (xn+1) 6= ζ (γn) for n =
1,2,3, · · · ,m− 1 of all finite strings. Define the product of
two elements in ∆ as follows: a = (a1,γ1,a2,γ2, · · · ,γm−1,am)
and b = (b1,α1,b2,α2, · · · ,αn−1,bn) are elements in ∆ and
γ ∈ Γ, the product of a and b in ∆ is :

a γ b=

{
(a1, · · · ,amγb1, · · · ,bn) if ζ (am = ζ (γ) = ζ (b1)

(a1, · · · ,am,γ,b1, · · · ,bn) otherwise

Theorem 2.2. Let ∆ = {(x1,γ1,x2,γ2, · · · ,γm−1,xm)} where
m ≥ 1 is an integer, xn ∈ ∪{Si : i ∈ I} for n = 1,2,3, · · · ,m
, γk ∈ ∪{Γi : i ∈ I} for k = 1,2,3, · · · ,m− 1. Then ∆ is a Γ-
semigroup

Proof:
For associativity, we have to consider the following cases. Let

a = (a1,γ1,a2,γ2, · · · ,γm−1,am)

b = (b1,α1,b2,α2, · · · ,αn−1,bn)

c = (c1,β1,c2,β2, · · · ,βp−1,cp)

in ∆ and α,β in ∪{Γi : i ∈ I}.
When ζ (am) = ζ (α) = ζ (b1) and ζ (bn) = ζ (β ) = ζ (c1)
a α b = (a1,γ1,a2,γ2, · · · ,γm−1,amαb1,α1, · · · ,αn−1,bn)
b β c = b1,α1, · · · ,αn−1,bnβc1,β1, · · · ,βp−1,cp)

(aαb)βc = (a1, · · · ,amαb1, · · · ,bnβc1, · · · ,cp)

= aα(bβc)

In a similar way one can see the associativity follows in other
situations also. Hence ∆ is a Γ- semigroup.

Free product of disjoint Γ- semigroups
Here we are considering the case of two Γ- semigroups over
the same Γ and the case of a family of disjoint Γ- semigroups
over the same Γ is similar in nature.
Consider non-empty sets S1,S2,Γ and let S1 and S2 are Γ-
semigroups over the same Γ. As earlier, the set of all elements
of the form (a1,γ1,a2,γ2, · · · ,γm−1,am) where a1,a2, · · · ,am ∈
S1∪S2 and γ1,γ2, · · · ,γm−1 ∈ Γ is a Γ- semigroup and is called
free-Γ-semigroup product over the alphabet S1∪S2 relative to
Γ. We denote it by S∗i Γ. The empty word is the word which
has a no letters. Operation on S∗i Γ is defined as same as that
we defined earlier.
For

a = (a1,γ1,a2,γ2, · · · ,γm−1,am)

b = (b1,α1,b2,α2, · · · ,αn−1,bn)
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in S∗i Γ and γ ∈ Γ

a γ b =

{
(a1, · · · ,amγb1, · · · ,bn) if ζ (am = ζ (b1)

(a1, · · · ,am,γ,b1, · · · ,bn) if ζ (am 6= ζ (b1)

It is straight forward to check associativity for the various
cases arise, and so we can see that S∗i Γ is a Γ-semigroup.

Remark 2.3. There are elements of S∗i Γ which are strings
(ai) of length one where ai ∈ S1∪S2. In fact S∗i Γ is generated
by strings of length one, since
(a1,γ1,a2,γ2, · · · ,γm−1,am)
= (a1),(γ1),(a2),(γ2), · · · ,(γm−1),(am)
for every (a1,γ1,a2,γ2, · · · ,γm−1,am) in S∗i Γ. So we exclude
the brackets in writing a string of length one.

A vital property of free products is the following.

Proposition 2.4. Let ∆ = S∗i Γ be the free-Γ-product of two
Γ-semigroups over the same Γ. Then for each i ∈ {1,2} there
exists a Γ-monomorphism θi : (Si,Γ)→ ∆ given by, θi(aγb) =
(aγb) associating the elements a,b ∈ S1∪S2 and γ ∈ Γ with
the one letter word (aγb). If T is a Γ-semigroup over the
same Γ for which there is a Γ-morphism ψi : Si→ T for each
i = 1,2 then there is a unique morphism λ : ∆→ T with the
property that the diagram

Si ∆

T

θi

ψi
λ

commutes for every i = 1,2.

Proof:
Since each element aγb in S1∪S2 is also a word (aγb) in Γ,
we can consider S1∪S2 as a Γ-subsemigroup of ∆. Given T
and Γ-morohisms ψi are given (i = 1,2), define λ : ∆→ T by,
λ ((a1,γ1,a2, · · · ,γm−1,am))
= ψζ (a1)(a1),γ1,ψζ (a2)(a2), · · · ,γm−1,ψζ (am)(am).

The expression on the right side is the product of elements
of T , hence λ maps ∆ into T . Further λ is a Γ-morphism, for

a = (a1,γ1,a2,γ2, · · · ,γm−1,am)

b = (b1,α1,b2,α2, · · · ,αn−1,bn)

elements of ∆ and γ ∈ Γ, then if ζ (am) 6= ζ (b1),

λ (aγb) = λ ((a1,γ1, · · · ,γm−1,am,γ,b1,α1, · · · ,bn))

= ψζ (a1)(a1), · · · ,γ,ψζ (b1)(b1), · · ·ψζ (bn)(bn)

= λ (a)γλ (b)

The above diagram commutes since

λθi(aγb) = λ (θi(aγb))

= λ ((aγb))

= ψζ (a)(a)γψζ (b)(b)

= ψi(aγb)

hence λθi = ψi.
The uniqueness of the λ follows from the way that ∆ is

created by words of length one. If λ is to make the diagram
commute then it is compulsory to have ψi(aγb) = λ ((aγb))
for every i = 1,2. Then, if λ is to be a Γ- homomorphism we
must have
λ (a1,γ1,a2,γ2, · · · ,γm−1,am)
= λ (a1),γ1,λ (a2),γ2, · · · ,γm−1,λ (am)
= ψζ (a1)(a1)γ1ψζ (a2)(a2)γ2 · · ·γm−1ψζ (am)(am)
for every a1,γ1,a2,γ2, · · · ,γm−1,am in ∆.
ie., ∆ must be exactly what we defined it.

Proposition 2.5. Let S1 and S2 be two Γ-semigroups , ∆ be
the free product of S1 and S2 and let H be a Γ-semigroup such
that

• there exists a Γ-monomorphism fi : Si→ H for i = 1,2.

• if T is a Γ-semigroup and if there exist Γ-monomorphism
gi : Si → T for i = 1,2 then there exists a unique Γ-
monomorphism δ : H→ T such that the diagram

Si H

T

fi

gi
δ

commutes for every i = 1,2.

then H is isomorphic to ∆.

Proof
From the property of ∆ in Proposition 2.4, when T = ∆

and ψi = φi for i = 1,2 there is a unique Γ-morphism (identity
map 1∆) ∆→ ∆ making the diagram

Si ∆

∆

θi

commutes for every i = 1,2.
By uniqueness 1∆ is the only Γ-morphism from ∆ into ∆

having the property. Similarly the identity map 1H is the only
Γ-morphism from H into H with the property that the diagram

Si H

H

fi

fi

commutes for every i = 1,2.
Now apply Proposition 2.4 with T = H and ψi = fi for

i = 1,2 then we have a morphism λ from ∆ to H such that

Si ∆

H

θi

fi
λ

(2.1)
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commutes for every i = 1,2.
Then by the assumed property of H with T =∆ and gi = θi

we obtain a Γ-morphism δ : H→ ∆ such that the diagram

Si H

∆

fi

θi
δ

(2.2)

commutes for every i = 1,2.
It follows that

δλθi = δ fi = θi
λδ fi = λθi = fi

that is, if we track together, the dragrams 2.1 and 2.2 in both
of the possible ways we obtain commutative diagrams

Si ∆

∆

θi

θi
δλ

Si H

H

fi

fi
λδ

for i = 1,2

by the uniqueness , we get,

δλ = 1∆ and λδ = 1H

thus δ and λ are mutually inverse Γ-isomorphisms and H ' ∆

as required.
We denote by Γ -Sgrp the category of Γ-semigroups

which has the Γ-semigroups as objects and the Γ-homomorphisms
of Γ-semigroups as arrows.

Then by the above two propositions we can conclude that
∆ is the unique coproduct in the sense of category theory.

3. Congruences and Free Γ-product
In this section we discuss certain congruences on Γ-semigroups.

Definition 3.1. (cf.[1]) Let S be a Γ-semigroup. An equiva-
lence relation ρ on S is called congruence if xρy implies that
(xγz)ρ(yγz) and (zγxρ(zγy) for all x,y,z ∈ S and γ ∈ Γ.

Let ρ be a congruence relation on (S,Γ).
Then S/ρ = {ρ(x) : x ∈ S} is the set of all equivalence classes
of elements of S with respect to ρ .

Theorem 3.2. (cf.[12]) Let ρ be a congruence relation on
Γ-semigroup (S,Γ). Then S/ρ is a Γ-semigroup.

Theorem 3.3. (cf.[4]) Let (φ ,g) : (S1,Γ1)→ (S2,Γ2) be a
homomorphism. Define the relation ρ(φ ,g) on (S1,Γ1) as fol-
lows:

xρ(φ ,g)y⇐⇒ φ(x) = φ(y).

Then ρ(φ ,g) is a congruence on (S1,Γ1).

Theorem 3.4. (cf.[12]) Let S and T be Γ-semigroups under
the same Γ and φ : S→ T be a Γ-homomorphism. Then there
is a Γ-homomorphism ψ : s/kerφ → T such that imφ = imψ

and the diagram

S T

S/kerφ

φ

(kerφ)#
ψ

commutes where (kerφ)# is the natural mapping from S into
S/kerφ defined by (kerφ)#(x) = xkerφ for all x ∈ S.

Corollary 3.5. S/kerφ ∼= imφ .

Free Γ-product of amalgam
Free Γ- product A = [(U,Γ0),(S1,Γ1),(S2,Γ2), f1, f2] of the
amalgam written as ∆U is defined as the quotient semigroup
of the ordinary free Γ- product ∆ in which for each i = 1,2;
the image f1(uγ0u′) of an element uγ0u′ of (U,Γ0) in (S1,Γ1)
is identified with its image f2(uγ0u′) in (S2,Γ2).

More precisely, denote θi the natural Γ-monomorphism
from Si to ∆ = S∗i Γ, then we define ∆U = S∗i Γ/ρ where ρ is
the congruence on ∆ generated by the subset

R = {(θ1 f1(uγ0u′),θ2 f2(uγ0u′)) : uγ0u′ ∈U} (3.1)

of ∆×∆.
It is clear that for each i = 1,2 there is a morphism µi =

ρ#θi from Si→ ∆U . It is also clear from the definition of ρ

that we have a commutative diagram

U S1

S2 ∆U

f1

f2 µ1

µ1

So there exists a Γ-morphism µ : U → ∆U such that µ =
µ1 f 1 = µ2 f2.
Since µ(U)6 µi(Si),
we necessarily have µ(U)6 µ1(S1)∩µ2(S2).
Hence the Γ-amalgam is embedded in its free Γ product if and
only if

• each µi is one-one

• µ1(S1)∩µ2(S2)6 µ(U)

If the above two conditions hold, we say that the amalgam is
naturally Γ-embedded in its free Γ product.

Theorem 3.6. The Γ-semigroup amalgam
A = [(U,Γ0),(S1,Γ1),(S2,Γ2), f1, f2] is embeddable in a Γ-
semigroup if and only if it is naturally Γ-embedded in its free
Γ product.

Before moving to the proof, we have to make use of the
following result.
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Proposition 3.7. If A is a Γ semigroup amalgam, the the free
Γ product ∆U of the amalgam is the pushout of the diagram
{U → S1}i=1,2. That is

(1) There exists for each i= 1,2 a Γ-morphism µi : Si→∆U
such that the diagram {U → Si→ ∆U}i=1,2 commutes.
That is, µ1 f1 = µ2 f2.

(2) If V is a Γ-semigroup for which morphisms gi : Si→V
exist such that g1 f1 = g2 f2, then there exists a unique
Γ- morphism δ : ∆U →V such that the diagram

Si ∆U

V

µi

gi
δ

commutes for each i = 1,2.

Proof
We have already observed property [1].

To see property [2], notice that by Proposition 2.4 there is a
unique morphism λ : ∆→ v such that

Si ∆

V

θi

gi
λ

is a commutative diagram for each i = 1,2.
Now, for all u,u′ ∈U and γ0 ∈ Γ

λθ1 f1(uγ0u′) = g1 f1(uγ0u′)

= g2 f2(uγ0u′)

= λθ2 f2(uγ0u′)

Hence (θ1 f1(uγ0u′),θ2 f2(uγ0u′)) ∈ λ ◦λ−1. So from equa-
tion (3.1) R⊆ λ ◦λ−1, hence, since λ ◦λ−1 is a congruence

ρ = R# ⊆ λ ◦λ
−1

By Theorem 3.4 it follows that the morphism λ : ∆ → V
factors through ∆U = S/ρ ,

that is, there is a unique morphism δ : ∆U →V such that
the diagram

∆ ∆U

V

ρ#

λ

δ

commutes.

By the definition of gi and from the commutativity of the
above two diagrams, for i = 1,2

gi = λθi = δρ
#
θi = δ µi

hence the diagram commutes.
Now we are going back to the proof of the theorem.

Proof:

One way is obvious and suppose that A is embeddable in
a Γ-semigroup T , so that there exists Γ-monomorphisms
gi = (g

′
i,g
′′
i ) : (Si,Γi)→ (T,ΓT ) for i = 1,2 and g = (g′,g′′) :

(U,Γ0)→ (T,ΓT ) such that f1g1 = f1g2 = g and such that
g1(S1)∩g2(S2) = g(λ ).

By Proposition 3.7 there exists a unique Γ-morphism δ :
∆U → T such that

Si ∆U

T

µi

gi
δ

is a commutative diagram for each i = 1,2.
For sγs

′
,s1γ1s

′
1 ∈ (S1,Γ1) , if µ1(sγs

′
) = µ1(s1γ1s

′
1) then

Suppose

δ (µ1(sγs
′
)) = δ (µ1(s1γ1s

′
1)) so

g1(sγs
′
) = g1(s1γ1s

′
1)

sγs
′

= s1γ1s
′
1

thus µ1 is a Γ-monomorphism.

Similarly we get µ2 is a Γ-monomorphism.
Suppose x ∈ µ1S1 ∩ µ2S2, without loss of generality, as-

sume x = µ1(s1γ1s
′
1) = µ2(s2γ2s

′
2) where s1,s

′
1 ∈ S1, s2,s

′
2 ∈

S2, γ1 ∈ Γ1 and γ2 ∈ Γ2.
Then δ (x) = δ (µ1(s1γ1s

′
1)) = g1(s1γ1s

′
1) ∈ g1(S1). Similarly,

δ (x) ∈ g2(S2). Thus δ (x) ∈ g1(S1)∩ g2(S2) = g(U) and so
there exist u = uγ0u′ ∈U such that δ (x) = g(U).

That is

g1(s1γ1s
′
1) = δ µ1(s1γ1s

′
1)

= δ (x)

= g(u)

= g1 f1(uγ0u′)

similarly

g2(s2γ2s
′
2) = δ µ2(s2γ2s

′
2)

= δ (x)

= g(u)

= g2 f2(uγ0u′)

Since gi is Γ-monomorphism it follows that f1(uγ0u′)= s1γ1s
′
1

and f2(uγ0u′) = s2γ2s
′
2 and so x= µ1(s1γ1s

′
1) = µ1( f1(uγ0u′))

and x = µ2(s2γ2s
′
2) = µ2 f2(uγ0u′) ∈ µ(U).

Thus A is naturally Γ-embedded in ∆U as required.

4. On Amalgam of Completely α-Regular
Γ-Semigroups

In the following we define completely α-regular Γ-semigroups
and provide necessary condition to the embeddability of their
amalgam.
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Definition 4.1. An element a ∈ S is called α-regular if there
exist elements x ∈ S and α ∈ Γ such that a = aαxαa. If every
element of a Γ-semigroup is α-regular in S then S is called
α-regular Γ-semigroup.

Definition 4.2. For an α-regular Γ-semigroup S, an element
b ∈ S is called α- inverse of an element a ∈ S if a = aαbαa
and b = bαaαb for all a,b ∈ S and α ∈ Γ.

Definition 4.3. An α−regular semigroup S is called Γ-inverse
Γ-semigroup if every element in S has a unique α-inverse in
S.

Definition 4.4. An element a is completely α-regular if there
exist an element x in S such that a = aαxαa and aαx = xαa
for all a,x ∈ S and α ∈ Γ. If all the elements in a Γ-semigroup
S is completely α-regular then S is called completely α-
regular Γ-semigroup.

Theorem 4.5. A Γ-semigroup amalgam (U ;S1,S2,φ1,φ2), in
which S1 and S2 are completely α-regular Γ-semigroups over
the same Γ is embeddable only if U is also completely α-
regular.

Proof:
Consider an amalgam A = (U ;S1;S2;φ1;φ2) in which S1 and
S2 are both completely α-regular Γ-semigroups. Suppose A is
embeddable, say in a Γ-semigroup T and consider an element
u ∈U .
Let us denote φ1(u) = s1 and φ2(u) = s2.
Since S1 and S2 are completely α-regular, there exist inverses
s−1

1 ∈ S1 and s−1
2 ∈ S2 of s1 and s2 respectively.

Let ψi : Si→ T, i ∈ 1,2 be the embedding Γ-monomorphisms,
then

ψ1(s1) = ψ1φ1(u) = ψ2φ2(u) = ψ2(s2)

. We can calculate in T :

ψ2(s−1
2 ) = ψ2(s−1

2 γs2γs−1
2 )

= ψ2(s−1
2 )γψ2(s2)γψ2(s−1

2 )

= ψ2(s−1
2 )γψ1(s1)γψ2(s−1

2 )

= ψ2(s−1
2 )γψ1(s1γs−1

1 γs1)γψ2(s−1
2 )

= ψ2(s−1
2 )γψ1(s1)γψ1(s−1

1 )γψ1(s1)γψ2(s−1
2 )

= ψ2(s−1
2 )γψ2(s2)γψ1(s−1

1 )γψ1(s1)γψ2(s−1
2 )

= ψ2(s−1
2 γs2)γψ1(s−1

1 )γψ1(s1)γψ2(s−1
2 )

= ψ2(s−1
2 γs2)γψ1(s−1

1 γs1)γψ2(s−1
2 )

= ψ2(s−1
2 γs2)γψ1(s1γs−1

1 )γψ2(s−1
2 )

= ψ2(s−1
2 γs2)γψ1(s1)γψ1(s−1

1 )γψ2(s−1
2 )

= ψ2(s−1
2 γs2)γψ2(s2)γψ1(s−1

1 )γψ2(s−1
2 )

= ψ2(s2γs−1
2 )γψ2(s2)γψ1(s−1

1 )γψ2(s−1
2 )

= ψ2(s2γs−1
2 γs2)γψ1(s−1

1 )γψ2(s−1
2 )

= ψ2(s2)γψ1(s−1
1 )γψ2(s−1

2 )

= ψ1(s1)γψ1(s−1
1 )γψ2(s−1

2 )

= ψ1(s1γs−1
1 )γψ2(s−1

2 )

= ψ1(s−1
1 γs1)γψ2(s−1

2 )

= ψ1(s−1
1 )γψ1(s1)γψ2(s−1

2 )

= ψ1(s−1
1 )γψ2(s2)γψ2(s−1

2 )

= ψ1(s−1
1 )γψ2(s2γs−1

2 )

= ψ1(s−1
1 )γψ2(s−1

2 γs2)

= ψ1(s−1
1 )γψ2(s−1

2 )γψ2(s2)

= ψ1(s−1
1 )γψ2(s−1

2 )γψ1(s1)

= ψ1(s−1
1 )γψ2(s−1

2 )γψ1(s1γs−1
1 γs1)

= ψ1(s−1
1 )γψ2(s−1

2 )γψ1(s1)γψ1(s−1
1 )γψ1(s1)

= ψ1(s−1
1 )γψ2(s−1

2 )γψ2(s2)γψ1(s−1
1 )γψ1(s1)

= ψ1(s−1
1 )γψ2(s−1

2 γs2)γψ1(s−1
1 γs1)

= ψ1(s−1
1 )γψ2(s2γs−1

2 )γψ1(s1γs−1
1 )

= ψ1(s−1
1 )γψ2(s2γs−1

2 )γψ1(s1)γψ1(s−1
1 )

= ψ1(s−1
1 )γψ2(s2γs−1

2 )γψ2(s2)γψ1(s−1
1 )

= ψ1(s−1
1 )γψ2(s2γs−1

2 γs2)γψ1(s−1
1 )

= ψ1(s−1
1 )γψ2(s2)γψ1(s−1

1 )

= ψ1(s−1
1 )γψ1(s1)γψ1(s−1

1 )

= ψ1(s−1
1 γs1γs−1

1 )

= ψ1(s−1
1 )

Now, using condition (2) of embeddability, there exists u′ ∈U
such that φi(u′) = s−1

i for i ∈ {1,2}.
Then, because s1γs−1

1 γs1 = s1 implies φ
−1
1 (s1γs−1

1 γs1)= φ
−1
1 (s1)

, we have uγu′γu = u due to injectivity of φ1. Similarly we
can conclude that u′γuγu′ = u′ and uγu′ = u′γu. Thus U is
completely Γ-regular.
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