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Abstract
The continuing threat of COVID-19 and deaths need an urgent cost-effective pharmacological approach. Here, we examine 
the inhibitory activity of a group of dietary bioactive flavonoids against the human protease TMPRSS2, which plays a major 
role in SARS CoV-2 viral entry. After the molecular docking studies of a large number of flavonoids, four compounds with 
high binding scores were selected and studied in detail. The binding affinities of these four ligands, Amentoflavone, Narirutin, 
Eriocitrin, and Naringin, at the active site of the TMPRSS2 target, were investigated using MD simulations followed by MM-
PBSA binding energy calculations. From the studies, a number of significant hydrophobic and hydrogen bonding interactions 
between the ligands and binding site amino residues of TMPRSS2 are identified which showcase their excellent inhibitory 
activity against TMPRSS2. Among these ligands, Amentoflavone and Narirutin showed MM-PBSA binding energy values 
of −155.57 and −139.71 kJ/mol, respectively. Our previous studies of the inhibitory activity of these compounds against the 
main protease of SARS-COV2 and the present study on TMPRSS2 strongly highlighted that Amentoflavone and Naringin 
can exhibit promising multi-target activity against SARS-CoV-2. Moreover, due to their wide availability, no side effects, 
and low cost, these compounds could be recommended as dietary supplements for COVID patients or for the development 
of SARS-CoV-2 treatments.
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Introduction

The coronavirus disease 2019 (COVID-19), caused by 
the Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2), has emerged as a global pandemic and is 
continuing as a threat to human beings [1]. SARS-CoV-2 
is a beta coronavirus similar to SARS-CoV and MERS 
viruses. Compared to the other two pathogenic human cor-
onaviruses, SARS-CoV-2 has extraordinary transmissibil-
ity which underscores the urgent need for pharmacological 

approaches to combat the virus [2]. Cost-effective treatments 
should be developed quickly to support the available vac-
cines for avoiding chaos all over the world.

The SARS-CoV-2 virus is enveloped and it contains four 
major structural proteins—the spike protein (S), nucleocap-
sid protein (N), membrane protein (M), and the enveloped 
protein (E). Once the virus enters the host cell, its RNA is 
released to the cell cytoplasm and there it undergoes repli-
cation and gets converted into an effector protein by viral 
proteases. Our previous studies were focused on the main 
protease (MPro) of SARS-CoV-2 which plays a key role in 
viral replication and transcription. We have used compu-
tational tools to study the flavonoids like Amentoflavone, 
Naringin, Eriocitrin, and Narirutin, and they were found to 
possess strong inhibitory activity against the MPro recep-
tor [3]. After this, we have been thoroughly investigating 
whether these flavonoids can be used to inhibit those protein 
targets which assist the viral cell entry. Here we present a 
selection of relevant compounds that inhibit them as it would 
prevent the viral load [4].
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Recently, it is reported that the cell entry of SARS-
CoV-2 occurs as a result of binding of its spike glyco-
protein S to the human host cell ACE2 receptor and it is 
a human protease TMPRSS2 which primes and activates 
S protein for its binding and fusion [2]. The spike pro-
tein has 2 subunits—S1 and S2. The S1 subunit with a 
receptor-binding domain binds to ACE2 receptor, whereas 
S2, the membrane-anchored subunit, helps in the fusion 
of virus and host membrane. From the studies, it is clear 
that TMPRSS2, the endothelial cell surface protein, helps 
in SARS-COV-2 viral entry and infection. The S1 subunit 
binds to the host cell receptor ACE2, which is followed 
by the priming of spike protein by the host TMPRSS2. 
TMPRSS2 breaks the viral S-protein at the right upstream 
of fusion peptide and results in membrane fusion. This 
points out the importance of inhibiting TMPRSS2 to avoid 
the host cell entry of SARS-CoV-2 virus [1]. Another rea-
son which makes TMPRSS2 a promising target is the fact 
that it is a human protease, thereby this eliminates the 
problem of causing drug resistance like viral protein tar-
gets [2].

Many attempts were made to develop a potential drug 
that can target TMPRSS2. The repurposing efficacy of 
some drugs were studied, and from the studies, Camo-
stat [2], a drug for treating chronic pancreatitis, was veri-
fied as a potential inhibitor of TMPRSS2. Later, after the 
screening of several FDA-approved drugs, Nafamostat, 
the drug for pancreatitis and disseminated intravascular 
coagulation, was found to block the SARS-CoV-2 fusion 
at a concentration less than that required for Camostat [2]. 
Apart from these proven antiviral drugs, a natural com-
pound Lutonarin [5] and the polyphenols like Mangiferin, 
Glucogallin, and Phlorizin [6] were also identified as safe 
TMPRSS2 inhibitors.

In this study, we focused on investigating the efficacy of 
bioactive compounds like flavonoids in inhibiting the serine 
protease “TMPRSS2.” Flavonoids are powerful antioxidants 
and they are found to be effective against diseases such as 
cancer, obesity, hypertension, and other diseases [7]. The lit-
erature studies also underline the effectiveness of flavonoids 
as potential antiviral compounds. Even though the crystal 
structure of TMPRSS2 was available (PDB ID 7MEQ) [8], 
the structure is incomplete with missing coordinates of co-
crystallized ligand (Nafamostat) and missing amino resi-
dues from residue numbers 164–166, 203–207, 217–220, 
and 250–255. The use of this incomplete crystal structure in 
docking and simulation studies may lead to wrong results. 
So we choose this crystal structure as a template and gener-
ated its complete structure using homology modeling. The 
virtual screening of a library of bioactive flavonoids was 
conducted based on molecular docking towards the binding 
site of homology modeled TMPRSS2 structure. Among the 
screened flavonoids, Amentoflavone, Narirutin, Eriocitrin, 

and Naringin showed strong inhibitory activity against the 
receptor.

The bioflavonoid Amentoflavone can be isolated from 
the Ginkgo biloba plant, whereas the flavonoids Naringin is 
mostly found in citrus fruits. These two dietary flavonoids, 
which possess strong antiviral activity, are available as 
nutritional supplements from different commercial sources 
[3]. Eriocitrin is also a citrus flavonoid found in lemon 
peel which has antioxidant and enzyme inhibitory activ-
ity [9]. Narirutin is a flavanone originally isolated from C. 
paradisi that has anti-inflammatory and antidepressant-like 
activities [10]. These natural flavonoids have several benefits 
over other therapeutic agents (a) available as dietary supple-
ments, (b) rarely have side effects (c), cost-effective, (d) can 
be easily absorbed in the intestine, and (e) can be used effec-
tively for home care patients with mild symptoms. These 
four selected compounds were then subjected to molecular 
dynamics simulations followed by MM-PBSA calculations. 
Their nonbonding interactions with the protein residues 
were also investigated. The MM-PBSA binding free energy 
calculations and nonbonding interaction studies along with 
docking results confirmed that Amentoflavone and Narirutin 
have maximum antiviral activity against TMPRSS2 protein.

Materials and methods

Preparation of target protein using homology 
modeling

The target TMPRSS2 structure [11] was prepared using 
the homology modeling method in which the sequence of 
TMPRSS2 was obtained from the UniProt database (Id 
O15393). As per the UniProt data, the amino acid sequence 
which belongs to the catalytic region of TMPRSS2 (256 to 
491) was selected as our target sequence. The crystal struc-
ture of TMPRSS2 (PDB ID 7MEQ) [8] with some miss-
ing residues (Fig. 1) and 98.5% sequence identity is used as 
the standard template. Using the homology modeling tools 
of the SWISS-MODEL web server [12, 13] and Modeller 
9.2 [14]interface in UCSF Chimera, we generated the 3D 
structure of TMPRSS2 target—modeled structures 1 and 2, 
respectively. We checked the reliability and consistency of 
the modeled structure obtained from the SWISS-MODEL 
web server using the validation parameters such as QMEAN 
[15] (normal score = 0.89 and z score =  −0.55) and GMQE 
value = 0.93. The discrete optimized protein energy (DOPE) 
[16] score can be employed for selecting the best structure 
from a group of models built by the Modeller. The modeled 
structure with the negative value of DOPE score (−1.12) 
is an indication of stable protein structure with minimum 
energy value. The RMSD of the two aligned model struc-
tures is only 0.5 Å. We further validated the stereochemical 
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quality of both modeled structures from their Ramachandran 
plots (RC-plot) using the Procheck web server [17]. The 
percentage of residues belonging to the most favored regions 
of the Ramachandran plot was found to be 86.9% and 86.8%, 
respectively, for modeled structures of SWISS-MODEL and 
Modeller 9.2. The modeled structure obtained from SWISS-
MODEL was utilized for further studies, and their structural 
and energetic validations were performed using the molecu-
lar dynamic simulation of 50 ns duration.

Preparation of ligands and molecular docking 
calculations

The structure of the TMPRSS2 target obtained from homol-
ogy modeling is used in molecular docking studies. After 
the screening of a group of flavonoids using docking stud-
ies, Amentoflavone, Narirutin, Eriocitrin, and Naringin 
with high binding free energy (docking score) with the 
target were chosen for extensive study and analysis. The 
representative 2D structures of these flavonoids are illus-
trated in Fig. 2. The structure data files (SDF) of these fla-
vonoids were downloaded from the Pubchem database and 
a DFT-based structure optimization was carried out using 
the B3LYP/SVP [18] method and Turbomole package [19]. 
The molecular docking calculations were performed using 
Autodock Vina software [20]. The Cartesian coordinates of 
the center of the catalytic triad (HIS 296, ASP 345, and 
SER 441) in modeled structure 1 are fixed as the center of 
the grid box in Vina docking calculations. There were 6400 

grid points per map where 40 grid points each were fixed in 
x, y, and z dimensions, respectively. We fixed the grid point 
spacing as 1 Å and exhaustiveness as 8 in our current calcu-
lation. The best binding poses with higher docking scores 
were identified and then subjected to further MD studies. For 
the validation of docking studies, we truncate the residues 
of modeled structures 1 and 2 from 256–491 as the crystal 
structure (7MEQ) [8] consists of continuous residues from 
256–491 and performed the docking of all ligands to these 
structures. Furthermore, we calculated the RMSD of the best 
docking pose of each ligand with the crystal structure and 
two model structures of TMPRSS2.

Molecular dynamics simulations

The molecular dynamics simulations were executed using 
the conformations of the protein–ligand complex generated 
from molecular docking calculations. GROMACS 2018.1 
molecular dynamics package [21] was employed to con-
duct the simulations. We have used OPLS all-atom force 
field parameters [22] for the protein–ligand system in the 
simulation procedure. The LigParGen server [23] provides 
an interface for generating OPLS force field parameters 
for organic ligands with partial atomic charges in the most 
commonly used molecular dynamics format. The structure 
(PDB format) of the best docking pose of all ligands gets 
protonated at physiological pH (7.4) and is submitted to Lig-
ParGen server to obtain the ligand coordinate and topology 
files for protein–ligand MD simulation. We used protonated 

Fig. 1   Amino acid sequence 
and Kabsch and Sander second-
ary structure representation of 
7MEQ template and modelled 
structure of TMPRSS2
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protein–ligand system at constant pH (7.4) for the MD sim-
ulation. The neutralization of the protein–ligand complex 
structure was done by adding sodium ions to it followed 
by its solvation using SPC/E water [24]. To optimize the 
solvated system, it was subjected to an energy minimization 
process using the steepest-descent minimization algorithm 
[25]. To avoid the collapse of the simulating system dur-
ing the production run, we carried out a 1 ns simulation of 
NVT and NPT equilibration MD run. We applied a posi-
tion restraining force on the heavy atoms of two coupled 
groups (protein–ligand and solvent-ions) during the process. 
This enables the proper equilibration of solvent molecules 
around the protein–ligand system, and a steady state of 
energy, temperature, and pressure is achieved. The system 
arrived to correct temperature and pressure with a proper 
orientation of protein–ligand system to simulate after NVT 
and NPT equilibration, respectively.

The equilibrated system was then subjected to a 100-
ns final production run with 2 fs time step. The tempera-
ture and pressure of the system were fixed as 300 K and 

1  bar, respectively. They were maintained throughout 
using Berendsen thermostat and Berendsen barostat [26]. 
The short-range forces of the simulating system were 
computed using the Verlet neighbor list and long-range 
electrostatic forces using the particle-mesh Ewald sum-
mation method [27]. We also performed a replicate MD 
simulation of 100 ns duration with temperature condition 
as 310 K (physiological temperature). The protein–ligand 
complex structure (PDB) obtained from the final frame 
of the simulation at 300 K is utilized as the initial struc-
ture for the MD replicate simulation at 310 K. After every 
10 ps, the coordinates from the trajectory were written 
so that a sufficient number of frames were obtained for 
analysis. The stabilization of protein–ligand structure was 
monitored through various trajectory analysis tools such 
as RMSD, RMSF, and radius of gyration. The hydrogen 
bonding and non-bonding analysis information through-
out the MD trajectory are extracted using the GROMACS 
tools and Pycontact [28] tool. We found the consistency 
of results obtained in post MD trajectory analysis of both 

Fig. 2   Representation of selected flavonoids
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simulations at 300 K and 310 K, respectively. Herein, we 
report the results of the replicate simulation at 310 K.

MM‑PBSA binding free energy calculations

MM-PBSA method, developed by Kollman and coworkers, 
can be used to evaluate the binding affinity of a ligand to 
a target protein in terms of binding free energy [29]. It is 
proved to be useful in drug designing, studying the stabili-
ties of macromolecular conformations, and identifying the 
hotspots [30]. It is also helpful in investigating the dominant 
binding interactions between ligand and protein [31]. This 
method proves to be effective in the drug discovery process, 
particularly for finding inhibitors against target proteins 
[32]. We used MM-PBSA implemented g_mmpbsa [33] 
code handling GROMACS MD trajectories to perform bind-
ing energy calculations. The energy values corresponding 
to protein (P), ligand (L), and protein–ligand complex (C) 
conformations were obtained from the MD trajectory using 
a single trajectory approach. The binding free energy of the 
protein–ligand complex in the solution phase was calculated 
using Eq. (1).

The free energy of any individual component is given by:

The (EMM) term in Eq. (2) represents the energy of molec-
ular mechanics (MM) potential with both bonding and non-
bonding (Van der Waals + electrostatic) terms. The value of 
Ebonded energy can be taken as zero under the assumption 
that the bound and unbound forms of protein and ligand con-
formations in the single trajectory method are similar. The 
TS term is the conformational entropy term associated with 
complex and isolated protein is calculated in the vacuum 
environment. Instead of considering absolute binding free 
energy, we focused on the contribution of individual resi-
dues of protein and ligands to the individual components of 
EMM and Gsolv terms given in Eqs. (2), (3), and (4). As the 
change in entropy term does not affect the relative binding 
energy of ligands, it was neglected [34].

The free energy of solvation (Gsolv) in Eq. (3) is evalu-
ated as the sum of the non-linearized version of the Poisson-
Boltzmann Equation (GPB) that gives the energy of polar 
interactions. The nonpolar energy (GSA) term is calculated 

(1)ΔGbind = Gc −
(

Gp + GL

)

G=E
MM

+G
solv

− TS

(2)E
MM

= E
bonded

+E
elec

+E
vdW

(3)G
solv

= G
PB
+G

SA

(4)G
SA
=
SASA

+ b

using the solvent-accessible surface area (SASA). The term 
in Eq. (4) is a coefficient related to the surface tension of 
the solvent, whereas b stands for the fitting parameter. The 
dielectric constants used for solvent, solute, and vacuum 
in the g_mmpbsa calculations have the values 80, 2, and 
1, respectively, and the solvent probe radius is 1.4 Å. We 
conducted the MM-PBSA calculations using the frames 
obtained from the 80–100 ns interval of equilibrated MD 
trajectory. Furthermore, we conducted 5 more MD repli-
cate simulations of 20 ns duration using the protein–ligand 
conformations obtained from the 100 ns MD trajectory and 
validated the MM-PBSA results. The studies related to the 
energy decomposition per residues that contributed to the 
estimated MM-PBSA binding energy of ligand in the pro-
tein–ligand complex were also conducted.

Results and discussion

Molecular docking studies

The 2D representation of the best docking poses of 4 
selected flavonoids and their interactions at the active site 
of TMPRSS2 modeled structure 1 obtained from Auto-
dock Vina calculations is depicted in Figs. 3 and 4. The 
protein residues which show hydrogen bond /Van der Waals 
interactions with the ligands in these docking poses were 
extracted using the freeware Maestro 12.5 (Schrödinger 
Release 2019–3: Maestro, Schrödinger, LLC, New York, 
NY). The higher negative docking scores of Amentofla-
vone (−9.2 kcal/mol), Narirutin (−9.1 kcal/mol), Eriocitrin 
(−9 kcal/mol), and Naringin (−8.1 kcal/mol) are indications 
of their potential binding towards the TMPRSS2 target. The 
catalytic binding site of TMPRSS2 [8, 11] comprises amino 
acid residues from residue number 256–492 and the resi-
dues SER441, HIS296, and ASP345 form the catalytic triad. 
The ligand Amentoflavone with the highest binding affin-
ity showed prominent Van der Waals interactions with the 
catalytic residues HIS296 and SER441. Furthermore, these 
residues exhibit either Van der Waal or hydrogen bonding 
interactions with all other flavonoids discussed in the cur-
rent work. However, the catalytic residue ASP345 shows 
interactions only with Narirutin and Eriocitrin. The other 
amino acid residues MET424, LEU419, GLN438, TRP461, 
CYS465, TYR474, VAL473, and CYS437 also show Van 
der Waals interactions with Amentoflavone whereas the 
residue SER436 forms a hydrogen bond. The residues 
responsible for Van der Waal interactions with Narirutin are 
HIS296, ASP345, CYS437, GLN438, TRP461, and CYS465 
and that form hydrogen bonding interactions are SER436 
and SER441. Eriocitrin was found to form hydrogen bonds 
with the residues GLY462 and SER436, and hydrophobic 
contacts with the residues like ASP345, GLU299, GLU389, 

1493Structural Chemistry (2022) 33:1489–1502



1 3

TRP461, HIS296, GLN438, SER441, and GLY464. Nar-
ingin was the ligand with the least docking score with Van 
der Waals interactions owned by the residues CYS297, 
HIS296, SER463, GLN438, SER441, and GLY464, and 
hydrogen bond interactions with the residues GLU299, 
GLY462, TRP461, and SER436. More hydrogen bonding 
interactions were observed in the docking pose of Naringin 
compared to Eriocitrin, Narirutin, and Amentoflavone.

For a benchmarking, we also carried out the docking 
calculations of known drugs Nafamostat and Camostat 
[2] which are active against TMPRSS2. The docking scores 
of Nafamostat and Camostat were found to be −8.4 kcal/
mol and −6.6 kcal/mol, respectively, and were closer to 
the reported values [34]. We also analyzed the amino acid 
residues involved in the binding interactions between the 
TMPRSS2 target and ligands reported in the previous stud-
ies [35, 36]. We also found significant nonbonding interac-
tions between the reported residues HIS296 and SER441 
and the selected flavonoids in our study. Other than these, 
GLN438, ASP435, GLU299, and TRP461 residues of 
TMPRSS2 were reported to have significant interactions 

with the ligands Gabexate, Camostat, and Nafamostat, 
respectively [35, 36]. The residues GLN438 and TRP461 
also showed Van der Waals interactions with the selected 
flavonoids and GLU299 showed Van der Waals interaction 
with Eriocitrin and hydrogen bond interactions with Nar-
ingin. The analysis shows that our results are in good agree-
ment with the reported literature. The validation of docking 
results (scores, RMSD and protein–ligand interactions) of 
all ligands in modeled structures and crystal structure of 
TMPRSS2 are provided in the supplementary information. 
We found that the RMSD of the best docking pose of all 
ligands in modeled structures 1 and 2 with respect to crystal 
structure is less than 2 Å. Identification of the crucial resi-
dues from the docking calculations belonging to the catalytic 
site of TMPRSS2 gave insights for further analysis.

Stability profile analysis of MD trajectory

In this section, we reported the results of trajectory anal-
ysis of 100 ns MD simulation carried out at 310 K. The 
steady energies of the simulating protein–ligand system with 

Fig. 3   2D representation of best docking poses and protein–ligand interactions of a Amentoflavone and b Naringin. Pink lines indicate hydrogen 
bonds between ligand and residues. All other residues exhibit hydrophobic interactions with the ligand
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respect to time were observed and proper equilibration was 
ensured. Further detailed RMSD calculations of simulating 
complex system and protein backbone with respect to the 
equilibrated initial structure were conducted and plotted in 
Fig. 5a, b, respectively.

The RMSDs of Amentoflavone, Narirutin, and Eriocitrin 
complex lie within the range of 0.15–0.3 nm, which indi-
cates the higher stability of these complexes in a solvated 
system. However, for the Eriocitrin complex system ini-
tially, there is a hike in the deviation and then comes down 

to a steady plot in course of time. When analyzing the 
RMSDs of the protein backbone (Fig. 5b), minor fluctua-
tions were observed for all protein–ligand systems within 
0.2 nm. We also calculated the RMSD of the complex w.r.t 
the average structure from the MD trajectory and were 
plotted in Fig. 6a. The Narirutin complex showed negligi-
ble deviation from its average structure with an RMSD of 
0.7 nm. The RMSDs of all protein–ligand systems showed 
minimum deviation within the range of 0.15–0.25 nm from 
their average structure except in the case of the Eriocitrin 

Fig. 4   2D representation of best docking poses and protein–ligand interactions of a Narirutin and b Eriocitrin. Pink lines indicate hydrogen 
bonds between ligand and residues. All other residues exhibit hydrophobic interactions with the ligand

Fig. 5   RMSD plots of a protein ligand complexes and b protein backbone in these complexes
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complex (0.3 nm) at the beginning of the simulation. All 
steady RMSD plots with minimum deviations confirmed 
their stable structure in the 100 ns MD trajectory. Next, 

we analyzed the contribution of individual protein residues 
to the structural fluctuations and their intensity in terms 
of RMSF (Fig. 6b). The protein residues in all complexes 

Fig. 6   a RMSD plots of complex with respect to average structure and b RMSF of residues of TMPRSS2

Fig. 7   Protein–ligand hydrogen bonding interaction profile of protein ligand complexes from MD trajectory
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showed minimum fluctuations within the range of 0.45 nm. 
An average of 4–5 residues (LYS390, GLU389, GLY217, 
ALA216, and ARG165) showed comparatively higher 
fluctuations in the range 0.3–0.45 nm throughout the simu-
lation. The lesser number of fluctuating residues is again 
an indication of stable protein–ligand systems in MD 
simulation.

Contact map analysis

The hydrophobic and hydrogen bonding interactions 
between ligands and TMPRSS2 target in the MD trajectory 
were analyzed using GROMACS and Pycontact tools [28]. 
The bond distance range for all hydrogen bond interactions 
was fixed as 1.5 to 3.5 Å and the minimum D-H-A bond 
angle in a hydrogen bond was fixed as 120°. The maximum 
cutoff bond distance for all hydrophobic interactions was 
fixed as 5.0 Å. The classes of interactions we considered 
in hydrophobic interactions include pi-stacking, pi-cation, 

pi-alkyl, pi-amide, and other vdW interactions. The occu-
pancy percentage of all interactions in the entire trajectory 
at 100 ps intervals is depicted in Figs. 7 and 8, respec-
tively. The hydrophobic-vdW interactions play a vital role 
in effective protein–ligand binding. TRP461 was found as 
a crucial residue with a 100% occupancy, which showed 
a significant hydrophobic interaction with Amentoflavone 
through pi-amide stacking interaction. The other residues 
that form hydrophobic interactions with the Amentofla-
vone ligand are in the order of SER463 > LYS342 > GLY4
72 > LEU419. These residues interact with Amentoflavone 
through vdW contacts. The residues GLN438 and THR459 
show high hydrogen bond occupancy of 91.7% and 83.3%, 
respectively, with Amentoflavone. The occupancy of other 
amino acid residues follows the order GLY464 > GLY46
2 > SER460 > CYS465 > CYS437 > GLU389 > TYR474. 
The occupancy percentage of hydrogen-bonded residues 
of Narirutin complex is in the order ASP440 > ASN398 = 
ASP435 > GLU395 > GLY259 > GLY391 > LYS392 > AS

Fig. 8   Protein–ligand hydrophobic interaction profile of protein ligand complexes from MD trajectory
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N433, whereas its hydrophobic residues follow the order 
ALA400 = ILE381 = SER436 > CYS437 > VAL434 > A
LA399 > SER382. Among these residues, ALA400 and 
ILE381 interact with Narirutin via alkyl interactions and 
all other residues interact through vdW contacts. When it 
comes to Eriocitrin, strong hydrogen bonding interactions 
are shown by the residues GLY462, TRP461, and SER463 
with occupancy percentages of 100%, 69.6%, and 47.8%, 
respectively, whereas the order of hydrophobic interaction 
is CYS465 > TYR416 > LEU419. The residue CYS465 
interacts with Eriocitrin via alkyl interactions, whereas 
TYR416 and LEU419 interact through other vdW con-
tacts. In the Naringin complex, the residues HIS296 and 
GLN438 show high hydrogen bond occupancy of 73.9% 
which is followed by SER436. The residues GLU389, 
GLU299, and CYS297 are found to have an occupancy 
percentage of 39.1%. Based on the profile, the significant 
residues that contribute to hydrophobic interactions with 
the Naringin ligand are in the order SER441 > SER463 
= CYS465 > GLY462 > VAL280 > LYS390 > ASP345. 
The type of hydrophobic interactions in these residues 
are found to be pi-alkyl (LYS 390), pi-sulfur (CYS465), 
and other vdW (SER441, SER463, GLY462, VAL280, 
ASP345), respectively.

The catalytic triad SER441, ASP345, and HIS296 were 
found to be involved in significant non-bonding interactions 
with all the selected ligands.

MM‑PBSA binding energies

We reported here the results of MM-PBSA calculations 
using 1000 snapshots obtained from the MD-trajectory 
between 81 and 100 ns at 20 ps intervals. The MM-PBSA 

binding energies obtained from the 20 ns MD replicates 
(provided in the supporting information) are found to be 
closer to the results reported in Table 1. It is the Van der 
Waal energy (vdW-E) that contributes most towards the 
total negative binding energy value of all four ligands. 
Along with this, the electrostatic energy (ESE) and the 
solvent accessible surface area energy (SASA-E) also 
contribute to the MM-PBSA binding energy with nega-
tive values. However, the increase in the polar solvation 
energy (PSE) with positive energy values reduces the 
total negative value of the binding energy. The increase 
in PSE is a consequence of the unfavorable interaction 
of residues with solvent molecules. The summation 
of the energies contributed by both protein and ligand 
residues to the components such as vdW-E, ESE, PSE, 
and SASA-E, respectively, gave the net MM-PBSA 
binding energy. The energy contribution of individual 
protein–ligand residues to the total binding energy was 
calculated using the code “energy2bfac” implemented 
in g_mmpbsa.

The amino acid residues which contribute to the MM-
PBSA binding energy with negative energy values are 
termed hotspot residues and those which contribute posi-
tive energy values are bad contact residues. From the MM-
PBSA protein residue-free energy decomposition analysis, 
we identified the hot spots and bad contact residues of 
all four complexes. Among the four ligands, the bind-
ing energy of Amentoflavone towards the active site of 
TMPRSS2 is found to possess the highest negative binding 
energy value of −155.48 kJ/mol. The energy contribution 
of Amentoflavone residue to this total binding energy is 
calculated as −85.25 kJ/mol which is higher compared to 
other ligand residues.

Fig. 9   MM-PBSA binding energy decomposition of TMPRSS2 residues in a Amentoflavone complex and b Naringin complex
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Hot spot and bad contact residues in Amentoflavone 
complex (Fig. 11a)

In the case of Amentoflavone, the hot spot residues (Figs. 9a 
and 11a) with negative binding energy are TRP461 (−16.84), 
GLN438 (−8.13), SER463 (−6.30), TYR474 (−4.35), and 
CYS437 (−3.50), respectively. However, ASP435, a bad 
contact residue that creates steric clashes inside the com-
plex, contributes positive binding energy of 11.29 kJ/mol. 
The contact map analysis gave evidence that the protein resi-
due GLN438 interacts with Amentoflavone using hydrogen 
bond interactions whereas TRP461 and SER463 through 
hydrophobic interactions. The residues that form hydrogen 
bonds with Amentoflavone contributed to the electrostatic 
energy part of MM-PBSA energy. TRP461 exhibits pi-
amide stacking interaction and the other two residues have 
vdW contacts. These three hydrophobic contacts gave their 
contribution to the vdW component of total BE. A higher 
energy contribution of TRP461 residue (−16.49 kJ/mol) is 
pointing out its crucial involvement in the catalytic activity 
of TMPRSS2. The potential binding of Amentoflavone to 
TMPRSS2 is again confirmed from these results.

Hot spot and bad contact residues in Narirutin complex 
(Fig. 12a)

The next potential inhibitor of TMPRSS2 is found to 
be Narirutin with the protein–ligand binding energy 
of −139.71  kJ/mol. The ligand residue contribution, 
in this case, is −76.98  kJ/mol. The hot spot residues 
(Figs. 10a and 12a) with negative binding energy con-
tribution are identified as VAL434 (−6.76), ILE381 
(−5.74), ASN398 (−5.66), VAL396 (−5.61), CYS437 
(−5.51), GLU395 (−5.35), SER436 (−5.22), ASN433 
(−4.39), ALA400 (−3.91), and GLY385 (−3.89). As 
per the non-bonding interaction profile, the higher occu-
pancy of hydrophobic contacts of the residues ALA400, 
ILE381, SER436, CYS437, and VAL434 with Narirutin 
contributes significantly to the vdW component of MM-
PBSA binding energy. Meanwhile, ASN398 and GLU395 
residues in the Narirutin complex contribute through 
hydrogen bonding interactions. The ASP440 residue 
with unfavorable interactions resulted in a contribution 
of a positive binding energy value of 14.0 kJ/mol to MM-
PBSA energy.

Fig. 10   MM-PBSA binding energy decomposition of TMPRSS2 residues in a Narirutin complex and b Eriocitrin complex

Table 1   Binding energy values 
and individual component 
energy calculated with 
MM-PBSA method for ligands. 
All reported energy values have 
a standard deviation within the 
range of 10 kJ/mol

Sl
No

Ligand vdW-E ESE PSE SASA-E BE SD

1 Amentoflavone  −213.469  −46.366 124.164  −19.902  −155.573 8.514
2 Narirutin  −188.967  −90.898 161.379  −21.223  −139.710 9.392
3 Eriocitrin  −210.970  −83.975 188.026  −23.705  −130.624 8.312
4 Naringin  −165.118  −90.722 160.086  −21.081  −116.834 10.451
5 Camostat  −86.431  −21.941 62.013  −11.823  −58.182 7.964
6 Nafamostat  −64.647  −60.267 90.462  −10.467  −44.920 10.495
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Hot spot residues in Eriocitrin complex (Fig. 12b)

Coming to the Eriocitrin complex, the total binding energy 
and the ligand residue contribution are −130.624 kJ/mol 
and −79.58  kJ/mol, respectively. The hotspot residues 
(Figs. 10b and 12b) and their binding energy contribution, 
in this case, include GLU389 (−11.21), TRP461 (−9.13), 
SER463 (−8.25), TYR416 (−8.18), GLN438 (−6.83), 
GLY462 (−4.89), ASP417 (−4.45), and LEU419 (−3.98), 
respectively. Two residues (GLU388 and ARG470) create 
steric clashes and hinder the effective protein–ligand bind-
ing. From the contact map analysis, it is found that TRP461, 

GLY462, and SER463 interact with Eriocitrin through 
hydrogen bonding interactions and the residues TYR416 
and LEU419 through hydrophobic-vdW interactions.

Hot spot residues in Naringin complex (Fig. 11b)

When the TMPRSS2-Naringin complex was analyzed, 
it is found that the residues (Figs. 9b and 11b) HIS296 
(−11.03), GLU299 (−7.73), GLN438 (−6.50), SER463 
(−4.34), GLU389 (−3.57), and CYS297 (−3.05) contrib-
ute to the negative binding energy, whereas the residues 

Fig. 11   Hotspot and bad contact residues in a  Amentoflavone and 
b  Naringin complex. Amino acid residue representation with red 
color and blue color indicate hot spot residues and bad contact resi-

due respectively. Dotted, blue and black lines indicate hydrophobic, 
hydrogen bond and steric clash respectively between amino acid resi-
dues and ligand

Fig. 12   Hotspot and bad contact residues in a Narirutin and b Erioc-
itrin complex Amino acid residue representation with red color and 
blue color indicate hot spot residues and bad contact residue respec-

tively. Dotted, blue and black lines indicate hydrophobic, hydrogen 
bond and steric clash respectively between amino acid residues and 
ligand
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ASP345 and LYS300 show unfavorable interactions. The 
contact map analysis results showed that the interaction of 
the protein residues GLN438, HIS296, GLU389, GLU299, 
and CYS297 with Naringin are through hydrogen bonds. 
The residues SER463 and GLY462 show hydrophobic-vdW 
contact with the receptor. This complex has the least nega-
tive value of −116.83 kJ/mol and the ligand contribution 
was −73.23 kJ/mol.

The rank of the ligands in the order of their inhibitory 
activity was found to be as Amentoflavone > Narirutin > Eri-
ocitrin > Naringin. For a better comparison, we calculated 
MM-PBSA binding free energy of Camostat and Nafamostat 
using the same MM-PBSA method. The binding energies of 
Camostat and Nafamostat were found to be only −58.182 kJ/
mol and −44.92 kJ/mol, respectively. The plots of MM-
PBSA energy decomposition analysis of these compounds 
are given in the supporting data. We also analyzed the hot 
spot residues of TMPRSS2 obtained from the MM-PBSA 
calculations of other protein–ligand systems reported earlier 
[35, 36]. The MM-PBSA energy decomposition studies of 
TMPRSS2 residues in Camostat/Gabexate complexes identi-
fied GLN438 as the key hot spot residue. Similarly, TRP461 
was identified as a hot spot residue when UKI-1 complexed 
with TMPRSS2 [34] and GLU389 was found as a hot spot 
residue when Bromhexine hydrochloride complexed with 
TMPRSS2 [36].

These hot spot residues reported earlier were found to be 
significant in our calculations also and they contributed with 
negative MM-PBSA binding energies in our calculations. 
The common hot spot residues of TMPRSS2 that inter-
act with all the selected ligands are found to be GLN438, 
SER463, GLU389, GLY462, TRP461, and LEU419. The 
major roles of these residues in effective protein–ligand 
binding were previously observed in our non-bonding and 
molecular docking calculations. Concluding this section, we 
observed that all four flavonoids are better inhibitors than 
Nafamostat and Camostat in terms of MM-PBSA binding 
energies.

Conclusion

The use of natural compounds as pharmacological agents 
will be highly beneficial in preventing the widespread of 
COVD-19. The major finding of the work is the identifi-
cation of some selected flavonoids as potential inhibitors 
of human protease TMPRSS2, which is one of the poten-
tial targets of SARS CoV-2. By inhibiting TMPRSS2, they 
help in preventing viral entry and thus reducing the viral 
load inside the cell. Through molecular docking, MD simu-
lation, contact map analysis, and the MM-PBSA calcula-
tions, we have identified Amentoflavone and Narirutin as 

the flavonoids with very high inhibitory activity against 
TMPRSS2. These flavonoids bind well to the active site of 
the protein via hydrophobic and hydrogen bond interactions. 
All the flavonoids reported are natural non-toxic compounds 
with proven drug potential against several health issues. 
Also, most of the reported flavonoids are dietary compounds 
and therefore they can be used by patients without the fear of 
side effects. Since all these flavonoids are widely available 
at a low cost, they can be used for further studies to assess 
their pharmacological relevance.

Associated content

We provide the following data and figures in the supporting 
file (a) B3LYP/SVP optimized coordinates of ligands used 
for docking, (b) Vina results of docking between modeled 
TMPRSS2 structures 1 and 2 (from Modeler) and selected 
ligands, (c) docking poses of selected flavonoids, (d) dock-
ing poses of Camostat and Nafamostat, (e) RMSD of best 
docking pose of ligands in modeled structures 1 and 2 with 
respect to 7MEQ, (f) MM-PBSA results obtained from MD 
simulation at 300 K, (g) MM-PBSA results of MD repli-
cates, (h) Ramachandran plots of modeled TMPRSS2 struc-
tures, and (i) PDB file of modeled TMPRSS2 structure.
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